

TEMBO Technology Lab (Pty) Ltd

Tommy Atkins
 Chief Development Officer (CDO)

1969: Trainee Operator

1974: RPG Programmer

LEO III

IBM System 3/10

1972: Cobol Programmer

ICL 450 IBM System/32

1975: RPG II Programmer

System/34

Terminal 5250

System/36 System/38

AS/400

.

Written

1970

Sold 6

million

copies

“Computers are incredibly fast, accurate and stupid;

Humans are incredibly slow, inaccurate and brilliant;

Together they are powerful beyond imagination.”

Albert Einstein

Legacy

Modernization

Modern

Validation

into DB2

Dictionary

Sanitization

Database

Modernization

Metadata

Enrichment
Relationships

into DB2

?

• RDi is a highly functional and flexible system management and code

development interface (IDE) for, but not limited to, the IBM i.

• As a result of this capability and RDi’s ability to allow the user to personalize and

customize the interface to suite individual preferences, it is not possible to

provide a step-by-step “how to” for the product.

• This “Walk-About” session will introduce you to the multiple capabilities of RDP

and provide guidelines for the use and customization of the features and

functions.

• RDi will be used exclusively throughout the following sessions of this course and

will therefore provide many opportunities to consolidate understanding and skill

with the product.

TEMBO Technology Lab (Pty) Ltd

DB2 Relational Database

Physical Data Store

DB2 Relational Database (Physical Data Store)

• The DB2 physical database definition and it’s data form the

life-blood of a company.

• Systems development becomes “DATA-CENTRIC”.

– Collects, Manages and Presents data in the form of information that

the company requires to operate in a profitable manner.

DB2 Relational Database (Physical Data Store)

• The Database built into the IBMi is a “Relational Database”.

• To ensure maximum flexibility, productivity and efficiency

from a relational database, the data should be normalized

to at least 3NF (3rd Normal Form).

DB2 Relational Database (Physical Data Store)

• The modern MVC concept separates the Database (Model) from

the 2 other components (View and Controller).

• This requires the Database to become truly “SELF-AWARE”

• Using mainly “CONSTRAINTS” and “TRIGGERS”

DBMS - Codd's 12 Rules

?

Normalizing Data: Theory

45

In the design of a relational database management system (RDBMS), the process of organizing data to minimize redundancy is called normalization. The goal of database normalization is to decompose relations with anomalies in order to produce smaller, well-structured relations. Normalization usually involves dividing large tables into smaller (and less redundant) tables and
defining relationships between them. The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database via the defined relationships.
Edgar F. Codd, the inventor of the relational model, introduced the concept of normalization and what we now know as the First Normal Form (1NF) in 1970.[1] Codd went on to define the Second Normal Form (2NF) and Third Normal Form (3NF) in 1971,[2] and Codd and Raymond F. Boyce defined the Boyce-Codd Normal Form (BCNF) in 1974.[3] Higher normal forms were defined by
other theorists in subsequent years, the most recent being the Sixth Normal Form (6NF) introduced by Chris Date, Hugh Darwen, and Nikos Lorentzos in 2002.[4]
Informally, a relational database table (the computerized representation of a relation) is often described as "normalized" if it is in the Third Normal Form.[5] Most 3NF tables are free of insertion, update, and deletion anomalies, i.e. in most cases 3NF tables adhere to BCNF, 4NF, and 5NF (but typically not 6NF).
A standard piece of database design guidance is that the designer should create a fully normalized design; selective denormalization can subsequently be performed for performance reasons.[6] However, some modeling disciplines, such as the dimensional modeling approach to data warehouse design, explicitly recommend non-normalized designs, i.e. designs that in large part do
not adhere to 3NF.[7]

Free the database of modification anomalies
An update anomaly. Employee 519 is shown as having different addresses on different records.
An insertion anomaly. Until the new faculty member, Dr. Newsome, is assigned to teach at least one course, his details cannot be recorded.
A deletion anomaly. All information about Dr. Giddens is lost when he temporarily ceases to be assigned to any courses.
When an attempt is made to modify (update, insert into, or delete from) a table, undesired side-effects may follow. Not all tables can suffer from these side-effects; rather, the side-effects can only arise in tables that have not been sufficiently normalized. An insufficiently normalized table might have one or more of the following characteristics:
The same information can be expressed on multiple rows; therefore updates to the table may result in logical inconsistencies. For example, each record in an "Employees' Skills" table might contain an Employee ID, Employee Address, and Skill; thus a change of address for a particular employee will potentially need to be applied to multiple records (one for each of his skills). If the
update is not carried through successfully—if, that is, the employee's address is updated on some records but not others—then the table is left in an inconsistent state. Specifically, the table provides conflicting answers to the question of what this particular employee's address is. This phenomenon is known as an update anomaly.
There are circumstances in which certain facts cannot be recorded at all. For example, each record in a "Faculty and Their Courses" table might contain a Faculty ID, Faculty Name, Faculty Hire Date, and Course Code—thus we can record the details of any faculty member who teaches at least one course, but we cannot record the details of a newly-hired faculty member who has not
yet been assigned to teach any courses except by setting the Course Code to null. This phenomenon is known as an insertion anomaly.
There are circumstances in which the deletion of data representing certain facts necessitates the deletion of data representing completely different facts. The "Faculty and Their Courses" table described in the previous example suffers from this type of anomaly, for if a faculty member temporarily ceases to be assigned to any courses, we must delete the last of the records on which
that faculty member appears, effectively also deleting the faculty member. This phenomenon is known as a deletion anomaly.
Minimize redesign when extending the database structure
When a fully normalized database structure is extended to allow it to accommodate new types of data, the pre-existing aspects of the database structure can remain largely or entirely unchanged. As a result, applications interacting with the database are minimally affected.
[edit] Make the data model more informative to users
Normalized tables, and the relationship between one normalized table and another, mirror real-world concepts and their interrelationships.
[edit] Avoid bias towards any particular pattern of querying
Normalized tables are suitable for general-purpose querying. This means any queries against these tables, including future queries whose details cannot be anticipated, are supported. In contrast, tables that are not normalized lend themselves to some types of queries, but not others.
For example, consider an online bookseller whose customers maintain wishlists of books they'd like to have. For the obvious, anticipated query—what books does this customer want?—it's enough to store the customer's wishlist in the table as, say, a homogeneous string of authors and titles.
With this design, though, the database can answer only that one single query. It cannot by itself answer interesting but unanticipated queries: What is the most-wished-for book? Which customers are interested in WWII espionage? How does Lord Byron stack up against his contemporary poets? Answers to these questions must come from special adaptive tools completely separate
from the database. One tool might be software written especially to handle such queries. This special adaptive software has just one single purpose: in effect to normalize the non-normalized field.
Unforeseen queries can be answered trivially, and entirely within the database framework, with a normalized table.
[edit] Example
Querying and manipulating the data within an unnormalized data structure, such as the following non-1NF representation of customers' credit card transactions, involves more complexity than is really necessary
To each customer there corresponds a repeating group of transactions. The automated evaluation of any query relating to customers' transactions therefore would broadly involve two stages:
Unpacking one or more customers' groups of transactions allowing the individual transactions in a group to be examined, and
Deriving a query result based on the results of the first stage
For example, in order to find out the monetary sum of all transactions that occurred in October 2003 for all customers, the system would have to know that it must first unpack the Transactions group of each customer, then sum the Amounts of all transactions thus obtained where the Date of the transaction falls in October 2003.
One of Codd's important insights was that this structural complexity could always be removed completely, leading to much greater power and flexibility in the way queries could be formulated (by users and applications) and evaluated (by the DBMS). The normalized equivalent of the structure above would look like this:
Functional dependencyIn a given table, an attribute Y is said to have a functional dependency on a set of attributes X (written X → Y) if and only if each X value is associated with precisely one Y value. For example, in an "Employee" table that includes the attributes "Employee ID" and "Employee Date of Birth", the functional dependency {Employee ID} → {Employee Date of Birth}
would hold. It follows from the previous two sentences that each {Employee ID} is associated with precisely one {Employee Date of Birth}.Trivial functional dependencyA trivial functional dependency is a functional dependency of an attribute on a superset of itself. {Employee ID, Employee Address} → {Employee Address} is trivial, as is {Employee Address} → {Employee Address}.Full
functional dependencyAn attribute is fully functionally dependent on a set of attributes X if it isfunctionally dependent on X, and
not functionally dependent on any proper subset of X. {Employee Address} has a functional dependency on {Employee ID, Skill}, but not a full functional dependency, because it is also dependent on {Employee ID}.
Transitive dependencyA transitive dependency is an indirect functional dependency, one in which X→Z only by virtue of X→Y and Y→Z.Multivalued dependencyA multivalued dependency is a constraint according to which the presence of certain rows in a table implies the presence of certain other rows.Join dependencyA table T is subject to a join dependency if T can always be
recreated by joining multiple tables each having a subset of the attributes of T.SuperkeyA superkey is a combination of attributes that can be used to uniquely identify a database record. A table might have many superkeys.Candidate keyA candidate key is a special subset of superkeys that do not have any extraneous information in them: it is a minimal superkey.Examples: Imagine a
table with the fields <Name>, <Age>, <SSN> and <Phone Extension>. This table has many possible superkeys. Three of these are <SSN>, <Phone Extension, Name> and <SSN, Name>. Of those listed, only <SSN> is a candidate key, as the others contain information not necessary to uniquely identify records ('SSN' here refers to Social Security Number, which is unique to each person).
Non-prime attributeA non-prime attribute is an attribute that does not occur in any candidate key. Employee Address would be a non-prime attribute in the "Employees' Skills" table.Prime attributeA prime attribute, conversely, is an attribute that does occur in any candidate key.Primary keyMost DBMSs require a table to be defined as having a single unique key, rather than a
number of possible unique keys. A primary key is a key which the database designer has designated for this purpose.[edit] Normal forms
The normal forms (abbrev. NF) of relational database theory provide criteria for determining a table's degree of vulnerability to logical inconsistencies and anomalies. The higher the normal form applicable to a table, the less vulnerable it is to inconsistencies and anomalies. Each table has a "highest normal form" (HNF): by definition, a table always meets the requirements of its HNF
and of all normal forms lower than its HNF; also by definition, a table fails to meet the requirements of any normal form higher than its HNF.
The normal forms are applicable to individual tables; to say that an entire database is in normal form n is to say that all of its tables are in normal form n.
Newcomers to database design sometimes suppose that normalization proceeds in an iterative fashion, i.e. a 1NF design is first normalized to 2NF, then to 3NF, and so on. This is not an accurate description of how normalization typically works. A sensibly designed table is likely to be in 3NF on the first attempt; furthermore, if it is 3NF, it is overwhelmingly likely to have an HNF of
5NF. Achieving the "higher" normal forms (above 3NF) does not usually require an extra expenditure of effort on the part of the designer, because 3NF tables usually need no modification to meet the requirements of these higher normal forms.
The main normal forms are summarized below.
. Denormalization
Main article: Denormalization
Databases intended for online transaction processing (OLTP) are typically more normalized than databases intended for online analytical processing (OLAP). OLTP applications are characterized by a high volume of small transactions such as updating a sales record at a supermarket checkout counter. The expectation is that each transaction will leave the database in a consistent
state. By contrast, databases intended for OLAP operations are primarily "read mostly" databases. OLAP applications tend to extract historical data that has accumulated over a long period of time. For such databases, redundant or "denormalized" data may facilitate business intelligence applications. Specifically, dimensional tables in a star schema often contain denormalized data.
The denormalized or redundant data must be carefully controlled during extract, transform, load (ETL) processing, and users should not be permitted to see the data until it is in a consistent state. The normalized alternative to the star schema is the snowflake schema. In many cases, the need for denormalization has waned as computers and RDBMS software have become more
powerful, but since data volumes have generally increased along with hardware and software performance, OLAP databases often still use denormalized schemas.
Denormalization is also used to improve performance on smaller computers as in computerized cash-registers and mobile devices, since these may use the data for look-up only (e.g. price lookups). Denormalization may also be used when no RDBMS exists for a platform (such as Palm), or no changes are to be made to the data and a swift response is crucial.
[edit] Non-first normal form (NF² or N1NF)
In recognition that denormalization can be deliberate and useful, the non-first normal form is a definition of database designs which do not conform to first normal form, by allowing "sets and sets of sets to be attribute domains" (Schek 1982). The languages used to query and manipulate data in the model must be extended accordingly to support such values.
One way of looking at this is to consider such structured values as being specialized types of values (domains), with their own domain-specific languages. However, what is usually meant by non-1NF models is the approach in which the relational model and the languages used to query it are extended with a general mechanism for such structure; for instance, the nested relational
model supports the use of relations as domain values, by adding two additional operators (nest and unnest) to the relational algebra that can create and flatten nested relations, respectively.
Consider the following table:

In the design of a relational database management system (RDBMS), the process of

organizing data to minimize redundancy is called normalization.

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/First_normal_form
http://en.wikipedia.org/wiki/First_normal_form
http://en.wikipedia.org/wiki/Second_normal_form
http://en.wikipedia.org/wiki/Second_normal_form
http://en.wikipedia.org/wiki/Third_normal_form
http://en.wikipedia.org/wiki/Third_normal_form
http://en.wikipedia.org/wiki/Raymond_F._Boyce
http://en.wikipedia.org/wiki/Raymond_F._Boyce
http://en.wikipedia.org/wiki/Raymond_F._Boyce
http://en.wikipedia.org/wiki/Raymond_F._Boyce
http://en.wikipedia.org/wiki/Raymond_F._Boyce
http://en.wikipedia.org/wiki/Raymond_F._Boyce
http://en.wikipedia.org/wiki/Boyce%E2%80%93Codd_normal_form
http://en.wikipedia.org/wiki/Sixth_normal_form
http://en.wikipedia.org/wiki/Sixth_normal_form
http://en.wikipedia.org/wiki/Christopher_J._Date
http://en.wikipedia.org/wiki/Christopher_J._Date
http://en.wikipedia.org/wiki/Christopher_J._Date
http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/Nikos_Lorentzos
http://en.wikipedia.org/wiki/Nikos_Lorentzos
http://en.wikipedia.org/wiki/Nikos_Lorentzos
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Relation_(database)
http://en.wikipedia.org/wiki/Fourth_normal_form
http://en.wikipedia.org/wiki/Fourth_normal_form
http://en.wikipedia.org/wiki/Fifth_normal_form
http://en.wikipedia.org/wiki/Fifth_normal_form
http://en.wikipedia.org/wiki/Sixth_normal_form
http://en.wikipedia.org/wiki/Sixth_normal_form
http://en.wikipedia.org/wiki/Denormalization
http://en.wikipedia.org/wiki/Computer_performance
http://en.wikipedia.org/wiki/Dimensional_modeling
http://en.wikipedia.org/wiki/Dimensional_modeling
http://en.wikipedia.org/wiki/Dimensional_modeling
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/w/index.php?title=Database_normalization&action=edit§ion=4
http://en.wikipedia.org/w/index.php?title=Database_normalization&action=edit§ion=5
http://en.wikipedia.org/w/index.php?title=Database_normalization&action=edit§ion=6
http://en.wikipedia.org/wiki/User_(computing)
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Functional_dependency
http://en.wikipedia.org/wiki/Functional_dependency
http://en.wikipedia.org/wiki/Functional_dependency
http://en.wikipedia.org/wiki/Transitive_dependency
http://en.wikipedia.org/wiki/Transitive_dependency
http://en.wikipedia.org/wiki/Transitive_dependency
http://en.wikipedia.org/wiki/Multivalued_dependency
http://en.wikipedia.org/wiki/Multivalued_dependency
http://en.wikipedia.org/wiki/Multivalued_dependency
http://en.wikipedia.org/wiki/Join_dependency
http://en.wikipedia.org/wiki/Join_dependency
http://en.wikipedia.org/wiki/Join_dependency
http://en.wikipedia.org/wiki/Superkey
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Primary_key
http://en.wikipedia.org/wiki/Primary_key
http://en.wikipedia.org/wiki/Primary_key
http://en.wikipedia.org/w/index.php?title=Database_normalization&action=edit§ion=8
http://en.wikipedia.org/wiki/Denormalization
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Online_analytical_processing
http://en.wikipedia.org/wiki/Business_intelligence
http://en.wikipedia.org/wiki/Business_intelligence
http://en.wikipedia.org/wiki/Business_intelligence
http://en.wikipedia.org/wiki/Dimension_table
http://en.wikipedia.org/wiki/Dimension_table
http://en.wikipedia.org/wiki/Dimension_table
http://en.wikipedia.org/wiki/Star_schema
http://en.wikipedia.org/wiki/Star_schema
http://en.wikipedia.org/wiki/Star_schema
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Snowflake_schema
http://en.wikipedia.org/wiki/Snowflake_schema
http://en.wikipedia.org/wiki/Snowflake_schema
http://en.wikipedia.org/w/index.php?title=Database_normalization&action=edit§ion=10
http://en.wikipedia.org/wiki/Nested_relational_model
http://en.wikipedia.org/wiki/Nested_relational_model
http://en.wikipedia.org/wiki/Nested_relational_model
http://en.wikipedia.org/wiki/Nested_relational_model
http://en.wikipedia.org/wiki/Nested_relational_model

Normalizing Data: Theory
• First Normal Form (1NF)

(1NF or Minimal Form) is a normal form used in database normalization. A relational

database table that adheres to 1NF is one that meets a certain minimum set of criteria.

These criteria are basically concerned with ensuring that the table is a faithful

representation of a relation and that it is free of repeating groups.

According to Date's definition of 1NF, a table is in 1NF, if and only if, it is "isomorphic to some

relation", which means, specifically, that it satisfies the following five conditions:

1. There's no top-to-bottom ordering to the rows.

2. There's no left-to-right ordering to the columns.

3. There are no duplicate rows.

4. Every row-and-column intersection contains exactly one value from the applicable domain (and

nothing else).

5. All columns are regular [i.e. rows have no hidden components such as row IDs, object IDs, or

hidden timestamps].

Violation of any of these conditions would mean that the table is not strictly relational, and

therefore that it is not in first normal form.

Normalizing Data: Theory
• First Normal Form (1NF)

Examples of tables (or views) that would not meet this definition of first normal form

are:

• A table that lacks a unique key. Such a table would be able to accommodate duplicate rows, in

violation of condition 3.

• A view whose definition mandates that results be returned in a particular order, so that the row-

ordering is an intrinsic and meaningful aspect of the view. This violates condition 1. The tuples

in true relations are not ordered with respect to each other.

• A table with at least one nullable attribute. A nullable attribute would be in violation of condition

4, which requires every field to contain exactly one value from its column's domain. It should be

noted, however, that this aspect of condition 4 is controversial. It marks an important departure

from Codd’s later vision of the relational model, which made explicit provision for nulls.

http://en.wikipedia.org/wiki/Tuple

Normalizing Data: Theory

• First Normal Form (Summary)

– Each Physical File/Table must have a unique key.

– A record/row may not contain recurring values.

Normalizing Data: Theory

• Second Normal Form (2NF)

Originally defined by E.F. Codd in 1971.

A table that is in first normal form (1NF) must meet one additional criteria if it is to

qualify for second normal form.

A non-prime attribute is one that does not belong to any candidate key.

Note that when a 1NF table has no composite candidate keys (candidate keys

consisting of more than one attribute), the table is automatically in 2NF.

Normalizing Data: Theory

• Third Normal Form (3NF)

• Codd's definition states that a table is in 3NF, if and only if, both of the following

conditions hold:

– The Table (T) is in second normal form (2NF)

– Every non-prime attribute of T is non-transitively dependent (i.e. directly

dependent) on every candidate key of T.

Normalizing Data: Summary

• Requiring existence of "the key" ensures that the
table is in 1NF

• Requiring that non-key attributes be dependent on
"the whole key" ensures 2NF

• Further requiring that non-key attributes be
dependent on "nothing but the key" ensures 3NF.

“The KEY, the whole KEY and nothing but the KEY”

?

Data Dictionary

Data Dictionary

Data Dictionary - Benefits

• Consistent naming and definition

– Facilitates “Data-Centric” systems development

– Assists in the development of “Data Analytics”

– Cognitive Computing a.k.a. Rule based Systems

(Watson and AI techniques)

?

Leopards

TEMBO Technology Lab (Pty) Ltd

Kruger National Park’s

Biggest Tusker

“Duke”

Died in 2001 of natural causes

• Physical Database

• Constraints

– Primary Keys

– Unique Keys

– Check Constraints

– Referential Constraints

• Journals & Receivers

• Commitment Control

• Trigger Programs

• Input/Output Servers

• Enterprise Servers

Job Attributes

File Definition Table x n

File Buffers x n

File Record Pointer x n

Job Variable Values

… Other Job Specific Info.

Must be in memory

for the job to execute

FILE

One or more fields make up the primary key.

The defined order provides the index sequence.

Only the primary is available for RPG keyed access.

FILE

One or more fields making up a unique key.

Used by RDBMS. Not available for direct client

usage.

FOREIGN

KEY FILE

PARENT

FILE
Requires a Primary or Unique Key.

Requires Fields Matching the Parent

Primary or a Unique Key Exactly.

Constraint is

defined here

CUSMSTF

CUSBALF

INVHDRF INVDETF

REPMSTF PRDMSTF

FILE

A SQL “WHERE” clause, without the WHERE

defining conditions to be checked as ‘TRUE’

Commit

CUSADRF

CUSMSTF

CUSBALF

INVHDRF INVDETF

REPMSTF PRDMSTF

?

TEMBO Technology Lab (Pty) Ltd

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

d Field3 s 5s 0 based(SPP)

d SPP s *
d Offset s 10U 0

30 bytes

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

d Field3 s 5s 0 based(SPP)

Offset = 83
d SPP s *
d Offset s 10U 0

30 bytes

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

d Field3 s 5s 0 based(SPP)

Offset = 83
d SPP s *
d Offset s 10U 0

30 bytes

SPP += Offset

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

d Field3 s 5s 0 based(SPP)

Offset = 83
d SPP s *
d Offset s 10U 0

30 bytes

SPP += Offset

SPP += (Offset + 10)

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

X

d Field3 s 5s 0 based(SPP)

Offset = 83
d SPP s *
d Offset s 10U 0

30 bytes

SPP += Offset

SPP += (Offset + 10)

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

X

d Field3 s 5s 0 based(SPP)

Offset = 83
d SPP s *
d Offset s 10U 0

30 bytes

SPP += Offset

SPP += (Offset + 10)

?

TEMBO Technology Lab (Pty) Ltd

Program

Trigger
Program

Table

*BEFORE

*INSERT

*DELETE

*UPDATE

*AFTER *INSERT

*DELETE

*UPDATE

*READ

*INSTEAD OF

*INSERT

*DELETE

*UPDATE

SQL Logicals Only

A Maximum of 300 Trigger

Programs are allowed

CUSMSTF

CUSBALF

INVHDRF INVDETF

REPMSTF PRDMSTF

CUSMSTF_B0

CUSMSTF_A0

INVDETF_B0

INVDETF_A0

PRDMSTF_B0

PRDMSTF_A0

REPMSTF_B0

REPMSTF_A0

CUSADRF

?

Kgalagadi Transfrontier Park

Gemsbok

Kalahari Lion

Cell: +27 83 678 9883

USA Office: +1-651-348-2468

Fax: +27 86 558 3626

Email: tommya@tembotechlab.com

Skype: tommya.atkins

Professional Resume:

http://www.linkedin.com/in/tommyatkins

RECLAIM YOUR HERITAGE!!! : www.adsero-optima.com

TEMBO Technology Lab (Pty) Ltd

Original Program Model (*PGM)

M

O

D

U

L

E

/

P

R

O

C

E

D

U

R

E

File Specifications

Data Definitions

Mainline

Sub-Routines

Create RPG/400 Program (CRTRPGPGM)

PEP

Integrated Language Environment (*PGM)

Global Data Definitions

Local Data Definitions

Procedure

Sub-Procedure x n

Sub-Function x n

File Specifications

Local Data Definitions

Procedure

B

Create Bound RPG Program (CRTBNDRPG)

File Specifications

Mainline

Program Entry Point (PEP)

B

Create RPG Module (CRTRPGMOD)

Integrated Language Environment (*MODULE)

Sub-Procedure x n

Sub-Function x n

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

Mainline

B

PEP

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

Mainline

*PGM

PEP

B

B

*MODULE

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

Mainline

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

Mainline

*MODULE

PEP

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

MAIN(procedure_name) or NOMAIN

TEMBO Technology Lab (Pty) Ltd

A service program (*SRVPGM) is a

method of binding *MODULES and

their included procedures together

into a single object, within which

selected procedures are individually

callable from other application code,

including other service program

procedures.

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

Local Data Definitions

Procedure

File Specifications

*MODULE

B

B

NOMAIN NOMAIN NOMAIN

• Always use Binder Source when binding service programs.

– Controls Signature

– Controls Export Symbol Table

• Write A CLLE compiler.

– Eliminates Compilation Mistakes

• Don’t use Binding Directories

– List the Additional Service Programs required

Procedure

Procedure

*MODULE

…

Procedure

Procedure

*MODULE

…

Procedure

Procedure

*MODULE

…

*PGM

Procedure Location

Procedure Location

Procedure Location

Procedure Location

Import Symbol Table

Binding

Directories

Or

Service

Programs

Procedure

Procedure

*MODULE

…

Procedure

Procedure

*MODULE

…

Procedure

Procedure

*MODULE

…

*SRVPGM

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Export Symbol Table

Binder

Source

No…you go down

and talk to them!

TEMBO Technology Lab (Pty) Ltd

Application

Program

(A)

Table A

Application

Program

(B)

Job Attributes

File Definition Table x 2

File Buffers x 2

File Record Pointer x 2

Job Variable Values

… Other Job Specific Info.

Table

Application

Program

(A)

I/O Server

Application

Program

(B)

RDBMS

I/O Server I/O Server Table A Table A Table A

Application

Program

(A)

I/O Server RDBMS

*BEFORE

Triggers

Application

Program

(B)

*AFTER

Triggers

INVHDRFA

CUSMSTF

CUSBALF

INVHDRF INVDETF

REPMSTF
PRDMSTF

INVDETF_B0

INVDETF_A0

CUSMSTF_B0

CUSMSTF_A0

INVHDRFA

CUSMSTF

CUSBALF

INVHDRF INVDETF

REPMSTF
PRDMSTF

INVDETF_B0

INVDETF_A0

CUSMSTF_B0

CUSMSTF_A0

I

CUSMSTF$

CUSBALF$

INVHDRF$

WDBIOS@@

APP. CODE

APP. CODE

APP. CODE

?

TEMBO Technology Lab (Pty) Ltd

• Select Records

• Change Sequence

• Select Fields (Explicit)

• Derive Fields (Explicit)

• Rename Fields (Explicit)

• Re-Order Fields (Explicit)

*FILE PF-DTA

*FILE LF

*FILE PF-DTA

IOS@@

*FILE LF

Updateable ODP

*FILE PF-DTA

IOS@@

*FILE LF

Non-Updateable ODP

• Always Explicit

• Select Records (*PRIMARY)

• Change Sequence (*PRIMARY)

• Select Fields

• Derive Fields

• Rename Fields

• Re-Order Fields

1

*FILE PF-DTA

*FILE LF

2

*FILE PF-DTA

*PRIMARY *SECONDARY

1

2

1

2

1

• Select Records

• Change Sequence

• Select Fields

• Derive Fields

• Rename Fields

• Re-Order Fields

1

*FILE PF-DTA

*FILE LF

2

*FILE PF-DTA

*FILE PF-DTA

IOS@@

*FILE LF

Updateable ODP

• Select Records

• Change Sequence

• Select Fields (Explicit)

• Derive Fields (Explicit)

• Rename Fields (Explicit)

• Re-Order Fields (Explicit)

*FILE LF

*FILE PF-DTA

• Select Records

• Change Sequence

• Select Fields (Explicit)

• Derive Fields (Explicit)

• Rename Fields (Explicit)

• Re-Order Fields (Explicit)

*FILE PF-DTA

*FILE LF

*FILE PF-DTA

IOS@@

*FILE LF

Updateable ODP

*FILE PF-DTA

IOS@@

*FILE LF

Non-Updateable ODP

• Select Records

• Select Fields

• Derive Fields

• Rename Fields

• Re-Order Fields

1

*FILE PF-DTA

*FILE LF

2

*FILE PF-DTA

*PRIMARY *SECONDARY

?

TEMBO Technology Lab (Pty) Ltd

• RPG IV

• Partially Free

• Completely Free Form

?

• ILE Components

• Modules

• Procedures

• Functions

• Create RPG Module (CRTRPGMOD)

– Create non-executable *MODULE’s

• Create Program (CRTPGM)

– Bind *MODULE’s to create a *PGM executable

• Create Bound RPG Program (CRTBNDRPG)

– Bind *MODULE’s to create a *PGM executable

• Create Service Program (CRTSRVPGM)

– Bind *MODULE’s to create a *SRVPGM containing callable

procedures

?

TEMBO Technology Lab (Pty) Ltd

• When a job is started on the IBMi, a *DFTACTGRP is

created, and it cannot be terminated except by ending the

job. *DFTACTGRP is where all original OPM program

objects run as well as all OS functions.

• In addition, limited-function RPG IV programs can run in

*DFTACTGRP. Limited function is defined as programs

that don't contain any procedures, don't call any

procedures, and use no contemporary built-in functions

(BIFs) as well as any features that require procedures not

supported by *DFTACTGRP.

*DFTACTGRP

QCMD

ACTGRP(‘NAMEDGRP’) PGM

ACTGRP(*NEW) PGMB

*DFTACTGRP

QCMD

PGMA

ACTGRP(*CALLER)

PGM/

PROC
PGMC

ACTGRP(*CALLER)

ACTGRP(*CALLER)

PGM/

PROC
PGM/

PROC

PGM/

PROC

ACTGRP(‘NAMEDGRP’) PGMD

*DFTACTGRP

ACTGRP(*NEW)

ACTGRP(*CALLER)

QCMD

PGMA

PGM/

PROC

PGMB

PGMC
ACTGRP(*CALLER)

ACTGRP(*CALLER)

PGM/

PROC
PGM/

PROC

PGM/

PROC

PGMD ACTGRP(*NEW)

*USER Domain

*JOB *JOB *JOB *JOB *JOB

*JOB *JOB *JOB *JOB *JOB

*SYSTEM Domain

?

TEMBO Technology Lab (Pty) Ltd

SPP = 1C5736254E001000

1 2 3 4 5

d Field1 s 5 based(SPP)
d Field2 s 5p 0 based(SPP)

A B C D E
12 34 5F

X

d Field3 s 5s 0 based(SPP)

Offset = 83
d SPP s *
d Offset s 10U 0

30 bytes

SPP += Offset

SPP += (Offset + 10)

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

Mainline

*MODULE

PEP

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

Mainline

*PGM

PEP

B

*MODULE

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

Mainline

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

MAIN(procedure_name) or NOMAIN

d UIN s 10 export inz('EXECDMI')

d UIKL s 10i 0 export inz(%len(UIK))

d UIP s * export inz(%addr(UI))

d UIEP s * export

 *

d DS_FILEA e ds export extname(‘FILEA’)

Module01

d UIN s 10 import

d UIKL s 10i 0 import

d UIP s * import

d UIEX s * import(UIEP)

 *

d DS_FILEA e ds import extname(‘FILEA’)

Module02

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

Global Data Definitions

Local Data Definitions

Procedure

File Specifications

File Specifications

*MODULE

B

MAIN(procedure_name) or NOMAIN

?

QRPGLESRC

?

TEMBO Technology Lab (Pty) Ltd

 //==

 SQLEXE = 'SELECT * FROM AOF130F WHERE '+%trim(SQL1) +

 ' ORDER BY '+ORDR+' FOR READ ONLY';

 //==

 exec sql prepare AOF130F_S1 from :SQLEXE;

 exec sql declare AOF130F_C1 cursor for AOF130F_S1;

 exec sql open AOF130F_C1;

 //==

 dow 0=0;

 //==

 exec sql fetch AOF130F_C1 into :RECIN;

 //==

 if ERH50(CAPtr);

 SETLSTALL(P.APPH);

 leave;

 endif;

 //==

 if FMTSEQ = 1;

 EEPP = '1101';

 else;

 EEPP = '0111';

 DEFNTP = ' ';

 endif;

 //==

 eval-corr BufferDS = AOF130FR;

 BUFFER = BufferDS;

 ADDLSTLE(P.APPH:AOF130FP:AOF130FL:'AOF130FR');

 //==

 enddo;

 //==

 exec sql close AOF130F_C1;

 *inlr=*on;

 return;

 //==

?

TEMBO Technology Lab (Pty) Ltd

S

M

L

?

TEMBO Technology Lab (Pty) Ltd

i5/OS® application programming interfaces (APIs) allow your application

program written in a high-level language to use specific data or functions of

the IBM® i5/OS operating system.

IBM intends that the APIs will continue to work as they originally worked, and any
existing applications that use the APIs will continue to work without any
incompatible changes in future releases. Significant architectural changes, however,
might necessitate incompatible changes.

Additionally, some API definitions, such as the UNIX® type of API definitions, are
established by industry standards organizations, where the degree of compatibility
is determined by the organizations.

• Some APIs provide the same functions as control language

(CL) commands and output file support.

• Some APIs provide functions that CL commands do not.

• Most APIs work more quickly and use less system overhead

than the CL commands.

• Some APIs have no equivalent CL commands.

An application programming interface (API) is a functional interface

supplied by the operating system or a separately orderable licensed

program that allows an application program written in a high-level

language to use specific data or functions of the operating system or

the licensed program.

• APIs provide better performance when getting system

information or when using system functions that are

provided by CL commands or output file support.

• APIs provide system information and functions that are

not available through CL commands.

• You can use calls from high-level languages to APIs.

• You can access system functions at a lower level than

what was initially provided on the system.

• Data is often easier to work with when returned by an

API.

• Binding Directory (*BNDDIR)
– An object that contains a list of names of modules and service programs.

• Data Queue (*DTAQ)
– An object that is used to communicate and store data used by several programs in a job or between jobs.

• Module (*MODULE)
– An object that is made up of the output of the compiler.

• Program (*PGM)
– A sequence of instructions that a computer can interpret and run. A program can contain one or more modules.

• Service Program (*SRVPGM)
– An object that packages externally supported callable routines into a separate object.

• User Index (*USRIDX)
– An object that provides a specific order for byte data according to the value of the data.

• User Queue (*USRQ)
– An object consisting of a list of messages that communicate information to other application programs. Only programming

languages that can use machine interface (MI) instructions can access *USRQ objects.

• User Space (*USRSPC)
– An object consisting of a collection of bytes used for storing any user-defined information.

Before using the i5/OS APIs, you need to understand several terms that

refer to i5/OS objects.

?

TEMBO Technology Lab (Pty) Ltd

?

TEMBO Technology Lab (Pty) Ltd

?

TEMBO Technology Lab (Pty) Ltd

?

TEMBO Technology Lab (Pty) Ltd

• A character literal or variable identifying a procedure in a service program in

the form 'LIBRARY/SRVPGM(procedure)‘.

• A character literal or variable identifying a program in the form 'LIBRARY/PGM'.

• A prototype for a bound procedure.

• A procedure pointer literal (%PADDR) or variable.

• All names are case-sensitive.

New HANDLER keyword

Other than the HANDLER keyword, there is no new RPG
syntax related to using an Open Access file

Fmyfile CF E WORKSTN HANDLER(‘MYLIB/MYSRV(hdlMyfile)’[:myds])

• Provides a way for RPG programmers to use the simple and well-understood RPG I/O

model to access resources and devices that are not directly supported by RPG.

• Open Access opens up RPG's file I/O capabilities, allowing anyone to write innovative I/O

handlers to access other devices and resources such as:

– Browsers

– Mobile devices

– Cloud computing resources

– Web services

– External databases

– XML files

– Spreadsheets

– And more

Program

Trigger
Program

Handler Program
(any ILE language) ?

Program

?

?

Mashtulele

An activation group is a substructure of a job in which Integrated Language
Environment (ILE) programs and service programs are activated.

This substructure contains the resources necessary to run the program.

These resources include: static and global program variables, dynamic
storage, temporary data management resources, certain types of exception
handlers and ending procedures.

Data_Item Location

Procedure

Procedure

*MODULE

…

Procedure

Data_Item

*MODULE

…

Procedure

Procedure

*MODULE

…

*PGM

Procedure Location

Procedure Location

Procedure Location

Procedure Location

Import Symbol Table

Binding

Directories

Or

Service

Programs

Data_Item Pointer

*SRVPGM

Procedure

Data_Item

*MODULE

…

Procedure

Procedure

*MODULE

…

Procedure

Procedure

*MODULE

…

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Procedure Pointer

Export Symbol Table

Binder

Source

