
System i

Programming

Object APIs

Version 6 Release 1

���

System i

Programming

Object APIs

Version 6 Release 1

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 193.

This edition applies to version 6, release 1, modification 0 of IBM i5/OS (product number 5761-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Object APIs 1

APIs 1

Data Queue APIs 1

Change Data Queue (QMHQCDQ) API 2

Authorities and Locks 2

Required Parameter Group 2

Format for Variable Length Record 3

Field Descriptions 3

Attribute Descriptions 3

Usage Notes 4

Error Messages 4

Clear Data Queue (QCLRDTAQ) API 5

Authorities and Locks 5

Required Parameter Group 6

Optional Parameter Group 6

Usage Notes 7

Error Messages 7

Receive Data Queue (QRCVDTAQ) API 7

Authorities and Locks 8

Required Parameter Group 8

Optional Parameter Group 1 10

Format of Sender Information 11

Field Descriptions 12

Optional Parameter Group 2 12

Usage Notes 12

Error Messages 13

Retrieve Data Queue Description (QMHQRDQD)

API 13

Authorities and Locks 14

Required Parameter Group 14

RDQD0100 Format 15

RDQD0200 Format 16

Field Descriptions 16

Error Messages 19

Retrieve Data Queue Message (QMHRDQM) API . 19

Authorities and Locks 20

Required Parameter Group 20

RDQM0100 Format 22

RDQM0200 Format 22

RDQS0100 Format 23

RDQS0200 Format 23

Field Descriptions 24

Error Messages 26

Send Data Queue (QSNDDTAQ) API 26

Authorities and Locks 27

Required Parameter Group 27

Optional Parameter Group 1 28

Optional Parameter Group 2 29

Optional Parameter Group 3 29

Usage Notes 29

Error Messages 29

Image Catalog APIs 30

Retrieve Image Catalog Details (QVOIRCLD) API 30

Authorities and Locks 31

Required Parameter Group 31

Format RCLD0100 31

Format RCLD0200 32

Format RCLD0300 33

Field Descriptions 33

Error Messages 36

Retrieve Image Catalogs (QVOIRCLG) API 36

Authorities and Locks 37

Required Parameter Group 37

Format RCLG0100 38

Image Catalog List Entry 38

Field Descriptions 38

Error Messages 40

User Queue APIs 40

Create User Queue (QUSCRTUQ) API 40

Authorities and Locks 41

Required Parameter Group 42

Optional Parameter Group 1 43

Optional Parameter Group 2 43

Optional Parameter Group 3 44

Error Messages 45

Delete User Queue (QUSDLTUQ) API 46

Authorities and Locks 46

Required Parameter Group 46

Error Messages 46

User Index APIs 47

Add User Index Entries (QUSADDUI) API 47

Authorities and Locks 48

Required Parameter Group 48

Format for Entry Lengths and Entry Offsets . . 50

Field Descriptions 50

Error Messages 50

Create User Index (QUSCRTUI) API 51

Authorities and Locks 52

Required Parameter Group 52

Optional Parameter Group 1 54

Optional Parameter Group 2 54

Optional Parameter Group 3 55

Optional Parameter Group 4 55

Dependencies between Parameters 56

Error Messages 56

Delete User Index (QUSDLTUI) API 57

Authorities and Locks 57

Required Parameter Group 57

Error Messages 58

Remove User Index Entries (QUSRMVUI) API . . . 58

Authorities and Locks 59

Required Parameter Group 59

Format for Entry Lengths and Entry Offsets . . 62

IDXE0100 Format 62

Field Descriptions 62

Error Messages 63

Retrieve User Index Attributes (QUSRUIAT) API . . 63

Authorities and Locks 63

Required Parameter Group 64

IDXA0100 Format 64

Field Descriptions 65

Error Messages 66

© Copyright IBM Corp. 1998, 2008 iii

Retrieve User Index Entries (QUSRTVUI) API . . . 66

Authorities and Locks 67

Required Parameter Group 67

Format for Entry Lengths and Entry Offsets . . 70

IDXE0100 Format 70

Field Descriptions 71

Error Messages 71

User Space APIs 72

Change User Space (QUSCHGUS) API 72

Authorities and Locks 73

Required Parameter Group 73

Optional Parameter 73

Error Messages 73

Change User Space Attributes (QUSCUSAT) API . . 74

Authorities and Locks 74

Required Parameter Group 75

Format for Variable Length Records 75

Field Descriptions 76

Keys 76

Field Descriptions 76

Error Messages 76

Create User Space (QUSCRTUS) API 77

Authorities and Locks 78

Required Parameter Group 78

Optional Parameter Group 1 79

Optional Parameter Group 2 79

Optional Parameter Group 3 80

Error Messages 81

Delete User Space (QUSDLTUS) API 81

Authorities and Locks 82

Required Parameter Group 82

Error Messages 82

Retrieve Pointer to User Space (QUSPTRUS) API . . 83

Authorities and Locks 83

Required Parameter Group 83

Optional Parameter 84

Error Messages 84

Retrieve User Space (QUSRTVUS) API 84

Authorities and Locks 85

Required Parameter Group 85

Optional Parameter 85

Error Messages 86

Retrieve User Space Attributes (QUSRUSAT) API . . 86

Authorities and Locks 87

Required Parameter Group 87

SPCA0100 Format 87

Field Descriptions 88

Error Messages 88

Object-related APIs 89

Change Library List (QLICHGLL) API 90

Authorities and Locks 90

Required Parameter Group 90

Error Messages 91

Change Object Description (QLICOBJD) API . . . 92

Authorities and Locks 92

Required Parameter Group 93

Format for Variable Length Record 93

Field Descriptions 94

Keys 94

Field Descriptions 95

Error Messages 99

Convert Type (QLICVTTP) API 99

Authorities and Locks 100

Required Parameter Group 100

Error Messages 101

Delete Object (QLIDLTO) API 101

Restrictions 101

Authorities and Locks 101

Required Parameter Group 102

Supported External Object Types 103

Usage Notes 107

Error Messages 107

List Objects (QUSLOBJ) API 108

Authorities and Locks 108

Required Parameter Group 109

Optional Parameter Group 1 110

Optional Parameter Group 2 110

Optional Parameter Group 3 112

Authority Control Format 112

Selection Control Format 112

Auxiliary Storage Pool (ASP) Control Format 113

Field Descriptions 113

Format of the Generated Lists 116

Input Parameter Section 116

OBJL0100 List Data Section 117

OBJL0200 List Data Section 117

OBJL0300 List Data Section 117

OBJL0400 List Data Section 118

OBJL0500 List Data Section 118

OBJL0600 List Data Section 119

OBJL0700 List Data Section 119

Field Descriptions 120

Error Messages 129

Materialize Context (QusMaterializeContext) API 130

Error Messages 130

Move Folder to ASP (QHSMMOVF) API 131

Restrictions 131

Authorities and Locks 131

Required Parameter Group 131

Error Messages 132

Move Library to ASP (QHSMMOVL) API 132

Restrictions 133

Authorities and Locks 134

Required Parameter Group 134

Optional Parameter Group 1 135

Error Messages 136

Open List of Objects (QGYOLOBJ) API 136

Authorities and Locks 138

Required Parameter Group 138

Optional Parameter Group 1 141

Optional Parameter Group 2 142

Sort Information Format 142

Field Descriptions 142

Authority Control Format 142

Field Descriptions 143

Selection Control Format 145

Field Descriptions 145

Job Identification Information Formats 145

JIDF0000 Format 145

Field Descriptions 146

JIDF0100 Format 146

Field Descriptions 146

iv System i: Programming Object APIs

JIDF0200 Format 147

Field Descriptions 147

Auxiliary Storage Pool (ASP) Control Format 147

Field Descriptions 148

Format of Receiver Variable 148

Field Descriptions 149

Valid Keys 150

Key 0200 Contents 152

Key 0300 Contents 152

Key 0400 Contents 153

Key 0500 Contents 153

Key 0600 Contents 154

Key 0700 Contents 154

Field Descriptions 155

Error Messages 162

Rename Object (QLIRNMO) API 163

Restrictions 164

Authorities and Locks 164

Required Parameter Group 165

Optional Parameter Group 1 166

Usage Notes 166

Error Messages 166

Retrieve Library Description (QLIRLIBD) API . . 168

Authorities and Locks 168

Required Parameter Group 168

Format of Data Returned 169

Format for Variable Length Record 169

Field Descriptions 169

Keys 170

Field Descriptions 171

Library Size Information Format 174

Field Descriptions 174

Error Messages 174

Retrieve Object Description (QUSROBJD) API . . 175

Authorities and Locks 175

Required Parameter Group 176

Optional Parameter Group 1 177

Optional Parameter Group 2 177

Auxiliary Storage Pool (ASP) Control Format 177

Field Descriptions 177

OBJD0100 Format 178

OBJD0200 Format 178

OBJD0300 Format 179

OBJD0400 Format 179

Field Descriptions 181

Error Messages 187

Concepts 188

Using Data Queue APIs 188

Using User Queue APIs 189

Using User Index APIs 190

Using User Space APIs 190

Appendix. Notices 193

Programming interface information 194

Trademarks 195

Terms and conditions 196

Contents v

vi System i: Programming Object APIs

Object APIs

The object APIs can be used to create, manipulate, and delete user spaces, user indexes, and user queues;

to send, receive, and clear entries on a data queue and retrieve data queue information; and to change,

list, rename, and retrieve information about i5/OS
®

objects.

The object APIs include:

v “Data Queue APIs”

v “Image Catalog APIs” on page 30

v “User Queue APIs” on page 40

v “User Index APIs” on page 47

v “User Space APIs” on page 72

v “Object-related APIs” on page 89

 APIs by category

APIs

These are the APIs for this category.

Data Queue APIs

Data queues are a type of system object that you can create, to which one high-level language (HLL)

program can send data, and from which another HLL program can receive data. The receiving program

can be waiting for the data, or can receive the data later.

Before using a data queue, you must first create it using the Create Data Queue (CRTDTAQ) command.

For additional information, see “Using Data Queue APIs” on page 188.

The data queue APIs are:

v

“Change Data Queue (QMHQCDQ) API” on page 2 (QMHQCDQ) changes some attributes of a data

queue.

v “Clear Data Queue (QCLRDTAQ) API” on page 5 (QCLRDTAQ) clears all entries from a data queue.

v “Receive Data Queue (QRCVDTAQ) API” on page 7 (QRCVDTAQ) receives data from the specified

data queue.

v “Retrieve Data Queue Description (QMHQRDQD) API” on page 13 (QMHQRDQD) retrieves

information about a data queue.

v “Retrieve Data Queue Message (QMHRDQM) API” on page 19 (QMHRDQM) retrieves an entry from a

data queue without removing the entry.

v “Send Data Queue (QSNDDTAQ) API” on page 26 (QSNDDTAQ) sends data to the specified data

queue.

 “Object APIs” | APIs by category

© Copyright IBM Corp. 1998, 2008 1

aplist.htm
aplist.htm

Change Data Queue (QMHQCDQ) API

 Required Parameter Group:

 1 Qualified data queue name Input Char(20)

2 Requested Changes Input Char(*)

3 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 4.

The Change Data Queue (QMHQCDQ) API changes the value of one or more attributes of an existing

data queue. All attributes of a data queue cannot be changed. This API can only be used with standard

data queues, not DDM data queues.

When changing a data queue, a shared update lock will be used. If the lock cannot be obtained, CPF9803

(Cannot allocate object in library) is generated. If any job is using the dequeue (DEQ) MI instruction with

a wait value or the Receive Data Queue (QRCVDTAQ) API with a wait value while removing the entry,

CPF9503 (Cannot lock data queue) is generated and the request would need to be tried again when the

queue is available. After the attribute is changed, the new value will be used for subsequent data queue

operations. For example, if the Allocate Object (ALCOBJ) CL command was used to lock a data queue

while locks are being enforced, when the data queue is changed to ignore locks, no exception is issued.

All data queue operations waiting for a lock on the queue at the time of the change will remain waiting

until they get the lock or until they timeout with the CPF9503. Any subsequent data queue operations

will no longer perform locking for the queue, so the lock via ALCOBJ is ignored by data queue

operations.

Authorities and Locks

Data queue authority

*OBJMGT

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*SHRUPD

Required Parameter Group

Qualified data queue name

INPUT; CHAR(20)

 The data queue whose description is to be changed. The first 10 characters contain the data queue

name, and the second 10 characters contain the data queue library name.

You can use these special values for the library name:

 *CURLIB The current library for the thread

*LIBL The library list

Requested changes

INPUT; CHAR(*)

 The changes to be made to the specified data queue. The information must be in the following

format:

2 System i: Programming Object APIs

Number of variable length records

BINARY(4)
The total number of all of the variable length records. At least one record must be

specified.

Variable length records

Each variable length record contains a key plus its associated new value. Refer to

“Format for Variable Length Record” for the format of this field.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Variable Length Record

The following table shows the format for the variable length record. For a detailed description of each

field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of new value

8 8 CHAR(*) New value

If the length of the new value is longer than the allowed length of the key field, the data is truncated to

the right. No message is issued.

If the length of the new value is shorter than the allowed length of the key field, the data is padded with

blanks to the right. No message is issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Field Descriptions

Key. Identifies the data queue attribute to be changed. Only certain data queue attributes can be changed.

The following table lists the valid key for the data queue attributes that can be changed. It also specifies

the type and allowed length for the attribute. For a description of each attribute along with their possible

values, see “Attribute Descriptions.”

 Key Type Attribute to change

100 CHAR(1) Automatic reclaim

200 CHAR(1) Enforce data queue locks

Length of new value. The length of the new value for the attribute to be changed.

New value. The value used for changing the specified data queue attribute.

Attribute Descriptions

Automatic reclaim. Whether the data queue resets the amount of storage allocated for the queue when

the queue is empty.

Object APIs 3

Possible values are:

 0 Storage is not reclaimed.

1 Storage is reclaimed when the queue is empty. The amount of storage allocated will be set to the initial

number of entries.

Enforce data queue locks. Identifies whether IBM-supplied data queue operations will enforce a lock on

the data queue. This attribute cannot be specified on the Create Data Queue (CRTDTAQ) CL command.

The default when a data queue is created is for locks to be ignored. A data queue can be locked with the

Allocate Object (ALCOBJ) CL command. Locks can be viewed with the Work with Object Locks

(WRKOBJLCK) CL command. When locks are enforced, performance can be impacted due to the

additional locking performed by all data queue operations. When data queue locks are being observed,

the following lock will be used for each data queue operation:

v *SHRUPD: Clear Data Queue (QCLRDTAQ) API, Receive Data Queue (QRCVDTAQ) API, Send Data

Queue (QSNDDTAQ) API, Enqueue (ENQ) and Dequeue (DEQ) MI instructions

v *SHRRD: Retrieve Data Queue Description (QMHQRDQD) API, Retrieve Data Queue Message

(QMHRDQM) API, Materialize Queue Attribute (MATQAT) and Materialize Queue Message

(MATQMSG) MI instructions

v *SHRUPD: Change Data Queue (QMHQCDQ) API (whether or not data queue locks are being

enforced)

Possible values are:

 0 Locks on the data queue are ignored by IBM-supplied data queue operations.

1 Locks on the data queue are enforced by IBM-supplied data queue operations. This value can impact

performance due to the additional locking performed for all data queue operations.

Usage Notes

This API can be used in a multithreaded job to change a local data queue, but cannot be used to change a

DDM data queue.

There is a possibility of a permanent deadlock when you use this API to change the data queue attributes

to enforce data queue locking. If the enforce data queue locking option is turned on, and a thread gets an

exclusive thread scoped lock on the queue with the Allocate Object (ALCOBJ) CL command, and then it

performs a receive (or dequeue) with a wait and there are no messages that satisfy the receive (or

dequeue), then the thread will enter a permanent deadlock waiting for a message. This is a permanent

deadlock because no other thread or job will be able to get in to perform a send (or enqueue) because the

receive (or dequeue) thread that is waiting is holding the thread scoped exclusive lock that was obtained

via ALCOBJ. To recover from the deadlock, cancel the job.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9503 E Cannot lock data queue &1 in &2.

4 System i: Programming Object APIs

Message ID Error Message Text

CPF9511 E Function not supported for DDM data queue &1.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V6R1

 Top | “Object APIs,” on page 1 | APIs by category

Clear Data Queue (QCLRDTAQ) API

 Required Parameter Group:

 1 Data queue name Input Char(10)

2 Library name Input Char(10)

 Optional Parameter Group:

 3 Key order Input Char(2)

4 Length of key data Input Packed(3,0)

5 Key data Input Char(*)

6 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 7.

The Clear Data Queue (QCLRDTAQ) API clears all data from the specified data queue, or clears

messages that match the key specification from a keyed data queue.

If the data queue was created with the AUTORCL keyword on the Create Data Queue (CRTDTAQ)

command set to *YES, when the queue is empty the storage allocated to the data queue will be reduced

to the storage needed for the initial number of entries defined for the data queue.

Distributed data management (DDM) data queues are supported by this API. This means that you can

use this API to clear a data queue that exists on a remote system. Clearing messages by key is not

supported for DDM data queues.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Object APIs 5

#TOP_OF_PAGE
aplist.htm

Data Queue Lock

*SHRUPD, after the data queue is changed to enforce data queue locks via the Change Data

Queue (QMHQCDQ) API.

Required Parameter Group

Data queue name

INPUT; CHAR(10)

 The name of the data queue being cleared.

Library name

INPUT; CHAR(10)

 The name of the library where the data queue resides.

You can use these special values for the library name:

 *LIBL The library list

*CURLIB The job’s current library.

Optional Parameter Group

Key order

INPUT; CHAR(2)

 The comparison criteria between the keys of messages on the data queue and the key data

parameter.

Valid values are:

 GT Greater than

LT Less than

NE Not equal

EQ Equal

GE Greater than or equal

LE Less than or equal

This parameter is ignored if the length of key data is zero. A value of blanks is recommended if

the length of key data is zero.

For example, assume a keyed data queue contains these three entries:

 Physical Entry 3-Character Key

1 GGG

2 XXX

3 AAA

If a key order of LT is specified with key data of XXX, entries 1 and 3 would be removed. If a

key order of EQ is specified with key data of XXX, entry 2 would be removed.

Length of key data

INPUT; PACKED(3,0)

 The length of the key data parameter. If this parameter is specified, it must be zero for nonkeyed

data queues. For keyed data queues it must be either zero or equal to the length specified on the

KEYLEN parameter on the Create Data Queue (CRTDTAQ) command. If this parameter is not

specified or is zero, all messages will be cleared from the data queue.

6 System i: Programming Object APIs

Key data

INPUT; CHAR(*)

 The data to be used for selecting messages to be removed from the data queue.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Usage Notes

This API can be used in a multithreaded job to clear messages from a local data queue. It cannot be used

in a job that allows multiple threads to clear messages from a DDM data queue.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9502 E Key length must be zero for data queue &1 in &2.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9504 E An invalid search order was specified.

CPF9506 E Key length must be &3 for data queue &1 in &2.

CPF9507 E Invalid key length specified.

CPF9510 E Operation on DDM data queue &1 in &2 failed.

CPF9511 E Function not supported for DDM data queue &1.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Receive Data Queue (QRCVDTAQ) API

 Required Parameter Group:

 1 Data queue name Input Char(10)

2 Library name Input Char(10)

3 Length of data Output Packed(5,0)

4 Data Output Char(*)

5 Wait time Input Packed(5,0)

 Optional Parameter Group 1:

 6 Key order Input Char(2)

7 Length of key data Input Packed(3,0)

Object APIs 7

#TOP_OF_PAGE
aplist.htm

8 Key data I/O Char(*)

9 Length of sender information Input Packed(3,0)

10 Sender information Output Char(*)

 Optional Parameter Group 2:

 11 Remove message Input Char(10)

12 Size of data receiver Input Packed(5,0)

13 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 12.

The Receive Data Queue (QRCVDTAQ) API receives data from the specified data queue.

When more than one program has a receive pending on a data queue at one time, a data entry sent to the

data queue is received by only one of the programs. The program with the highest run priority receives

the entry. The next entry sent to the queue is given to the job with the next highest priority.

If the data queue was created with the AUTORCL keyword on the Create Data Queue (CRTDTAQ)

command set to *YES, when the queue is empty the storage allocated to the data queue will be reduced

to the storage needed for the initial number of entries defined for the data queue.

Distributed data management (DDM) data queues are supported by this API. This means that you can

use this API to receive a message from a data queue that exists on a remote system. However, using this

API to receive messages without removing them from the data queue is not supported for DDM data

queues.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*SHRUPD, after the data queue is changed to enforce data queue locks via the Change Data

Queue (QMHQCDQ) API.

 Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),

QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a

cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized

to the data queue. An entry is added to the cache when a user calling one of the APIs has the required

authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a

journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting

the the send function has the required authority to the current profile name in the sender ID information

of the journal entry. The data in the cache is used until the job ends, so if you need to immediately

change a user’s authority to one of these objects, you may need to end that user’s jobs.

Required Parameter Group

Data queue name

INPUT; CHAR(10)

 The name of the data queue to receive the data from.

Library name

INPUT; CHAR(10)

8 System i: Programming Object APIs

The name of the library where the data queue resides.

You can use these special values for the library name:

 *LIBL The library list

*CURLIB The job’s current library.

Note: To improve data queue performance, the data queue APIs remember addressing

information for the last data queues used. This occurs when a specific (not *LIBL or *CURLIB)

value is provided for the library name, and the data queue is located in the system auxiliary

storage pool (ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing

information for data queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following

scenarios.

Scenario 1

If, a job references a library-specific data queue, the data queue is moved using the Move Object

(MOVOBJ) command or renamed using the Rename Object (RNMOBJ) command, and a new data

queue is created with the same name and library as the data queue that was renamed or moved,

then, the job continues to reference the original data queue, not the newly created data queue.

Scenario 2

If, a job references a library-specific distributed data management (DDM) data queue, the DDM

data queue is moved using the Move Object (MOVOBJ) command or renamed using the Rename

Object (RNMOBJ) command, and a new data queue is created with the same name and library as

the DDM data queue that was renamed or moved, the job continues to reference the original

DDM data queue, not the newly created data queue.

Scenario 3

If, a job references a DDM data queue, which starts a DDM target job (DDM conversation) on a

remote system that references a library-specific data queue, the data queue on the remote system

is moved using the Move Object (MOVOBJ) command or renamed using the Rename Object

(RNMOBJ) command, and on the remote system, a new data queue is created with the same

name and library as the data queue that was renamed or moved, then, the DDM target job

continues to reference the original data queue on the remote system, not the newly created data

queue, only when the same DDM target job is used for the subsequent data queue operation. If a

new DDM target job is used for the subsequent data queue operation, then the newly created

data queue will be used on the remote system.

Note: For more information about creating DDM data queues and about DDM target jobs, see the

Distributed database programming topic collection.

Length of data

OUTPUT; PACKED(5,0)

 The number of characters received from the data queue. If a time out occurs and no data is

received from the data queue, this field is set to zero. The value of this field will never exceed the

value specified for the MAXLEN parameter on the Create Data Queue (CRTDTAQ) command.

If the size of the data receiver variable is specified, the data received from the data queue will be

truncated if the message is longer than the size of the data receiver variable. The value of this

field will be set to the actual length of the data received before it is truncated.

Data OUTPUT; CHAR(*)

 A field of at least the length of the value specified for the MAXLEN parameter on the Create

Data Queue (CRTDTAQ) command. This field contains the data received from the data queue.

Object APIs 9

Note: If the length of this field is larger than the size of the message received, only the number of

characters (beginning from the left) as defined by the message received from the data queue are

changed. If the length of this field is smaller than the value specified for the MAXLEN parameter

on the Create Data Queue (CRTDTAQ) command, and the actual length of this field is not

specified in the size of data receiver parameter, unexpected results can occur.

If the length of this field is specified in the size of data receiver parameter, the data received will

be truncated if it is longer than the size specified.

Wait time

INPUT; PACKED(5,0)

 The amount of time to wait if no entries exist on the data queue.

When no entries are on the data queue, the wait time parameter (in seconds) specifies the

following:

 < 0 Waits forever.

0 Continue processing immediately. If no entry exists, the call completes immediately with the length of

data parameter set to zero.

> 0 The number of seconds to wait. The maximum is 99999 which allows a wait time of approximately 28

hours.

Notes: If the wait time value is less than or equal to 2, the job does not leave the activity level

(for 2 seconds). This is described as a short wait. For more details on activity levels and

implementation applications, see the Work management topic collection.

If a wait time is specified when receiving an entry from a data queue located in an independent

auxiliary storage pool (ASP), and the independent ASP is varied off:

v If *YES is specified or defaulted for the remove message parameter, QRCVDTAQ will end with

an exception, and no data will be returned.

v If *NO is specified for the remove message parameter, QRCVDTAQ will wait for the specified

wait time, and no data will be received, even if the independent ASP is varied on again and a

message is sent to the data queue.

Optional Parameter Group 1

Key order

INPUT; CHAR(2)

 The comparison criteria between the keys of messages on the data queue and the key data

parameter. When the system searches for the requested key, the entries are searched in ascending

order from the lowest value key to the highest value key until a match is found. If there are

entries with duplicate keys, the entry that was put on the queue first is received.

Valid values are:

 GT Greater than

LT Less than

NE Not equal

EQ Equal

GE Greater than or equal

LE Less than or equal

This parameter is ignored if the length of key data is zero. A value of blanks is recommended if

the length of key data is zero.

10 System i: Programming Object APIs

For example, assume a keyed data queue contains these three entries:

 Physical Entry 3-Character Key

1 GGG

2 XXX

3 AAA

4 GGG

If a key order of LE is specified with key data of XXX, entry 3 would be received. If the same

values were specified on a subsequent request, entry 1 would be received. Subsequent receives

with the same values would receive entry 4 and then entry 2.

Length of key data

INPUT; PACKED(3,0)

 The length of the key data parameter. If this parameter is specified, it must be zero for nonkeyed

data queues. For keyed data queues it must be equal to the length specified on the KEYLEN

parameter on the Create Data Queue (CRTDTAQ) command.

Key data

I/O; CHAR(*)

 The data to be used for receiving a message from the data queue. The key of the received

message is also returned in this field. It may be different than the key specified to search for. For

example, if the key data parameter is set to AA on input with the key order parameter set to GE

(greater than or equal to), the key of the record that is actually received could be AB or anything

else greater than or equal to AA. The key data parameter is set to the actual key of the received

data when the API returns.

Length of sender information

INPUT; PACKED(3,0)

 The length of the sender identification parameter.

Valid values are:

 0 No sender information is returned.

8 Returns only the bytes returned and bytes available fields of the sender information.

> 8 Return as much sender information as the length allows.

Sender information

OUTPUT; CHAR(*)

 The sender ID information associated with the received message.

Format of Sender Information

The format and content of the sender information returned is shown in the following table. For a detailed

description of each field, see “Field Descriptions” on page 12.

Note: On the CRTDTAQ command, the SENDERID parameter defaults to *NO. To include the sender ID

for each data queue entry, the SENDERID parameter must be *YES when the data queue is created.

 Offset

Type Field Dec Hex

0 0 PACKED(7,0) Bytes returned

4 4 PACKED(7,0) Bytes available

8 8 CHAR(10) Job name

Object APIs 11

Offset

Type Field Dec Hex

18 12 CHAR(10) User profile name

28 1C CHAR(6) Job number

34 22 CHAR(10) Senders current user profile name.

Note: The last four fields, together, combine to make up the sender ID.

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Job name. The name of the job that sent the message.

Job number. The job number of the job that sent the message.

Senders current user profile name. The current user profile name of the job that sent the message.

User profile name. The user profile name of the job that sent the message.

Optional Parameter Group 2

Remove message

INPUT; CHAR(10)

 Whether the message is to be removed from the data queue when it is received.

Valid values are:

 *YES The message is removed from the data queue. This is the default value if this parameter is not specified.

*NO The message is not removed from the data queue.

Size of data receiver

INPUT; PACKED(5,0)

 The size of the area to contain the data received from the data queue. If a value of 0 is specified

for this parameter, no data will be returned. If a size greater than 0 is specified, the data will be

copied into the receiver up to the specified length. If the available data is longer than the length

specified, it will be truncated.

If this parameter is not specified, the entire message will be copied into the receiver variable.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Usage Notes

This API can be used in a multithreaded job to receive messages from a local data queue. It cannot be

used in a job that allows multiple threads to receive messages from a DDM data queue.

12 System i: Programming Object APIs

Application queueing time and resource usage time for data queue usage are recorded only for messages

that are received in the initial thread of a job.

Error Messages

 Message ID Error Message Text

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF2472 E Invalid wait time specified.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9501 E Data queue &1 in &2 requires a key value.

CPF9502 E Key length must be zero for data queue &1 in &2.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9504 E An invalid search order was specified.

CPF9505 E Sender ID length value is not valid.

CPF9506 E Key length must be &3 for data queue &1 in &2.

CPF9507 E Invalid key length specified.

CPF9508 E Invalid sender ID length specified.

CPF9509 E Space access error.

CPF9510 E Operation on DDM data queue &1 in &2 failed.

CPF9511 E Function not supported for DDM data queue &1.

CPF9514 E Value for data length parameter not valid.

CPF9515 E Value for remove message parameter not valid.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 D Cannot allocate object &2 in library &3.

CPF9805 E Object &2 in library &3 destroyed.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R1

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve Data Queue Description (QMHQRDQD) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Qualified data queue name Input Char(20)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve Data Queue Description (QMHQRDQD) API retrieves the description and attributes of a

data queue. Examples include the number of entries currently on the data queue, the text description of

the data queue, whether the queue includes sender ID information, and whether the data queue is keyed.

Object APIs 13

#TOP_OF_PAGE
aplist.htm

The attributes of a distributed data management (DDM) data queue can be retrieved with this API.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*SHRRD, after the data queue is changed to enforce data queue locks via the Change Data

Queue (QMHQCDQ) API.

 Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),

QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a

cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized

to the data queue. An entry is added to the cache when a user calling one of the APIs has the required

authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a

journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting

the the send function has the required authority to the current profile name in the sender ID information

of the journal entry. The data in the cache is used until the job ends, so if you need to immediately

change a user’s authority to one of these objects, you may need to end that user’s jobs.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the data queue description to be returned.

The valid format names are:

 “RDQD0100

Format” on page

15

Basic data queue description.

“RDQD0200

Format” on page

16

DDM data queue description. This is valid for DDM data queues only.

Qualified data queue name

INPUT; CHAR(20)

 The data queue whose description is to be returned. The first 10 characters contain the data

queue name, and the second 10 characters contain the data queue library name.

14 System i: Programming Object APIs

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Note: To improve data queue performance, the data queue APIs remember addressing

information for the last data queues used. This occurs when a specific (not *LIBL or *CURLIB)

value is provided for the library name, and the data queue is located in the system auxiliary

storage pool (ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing

information for data queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following

scenario:

If, a job references a data queue the data queue is moved using the Move Object (MOVOBJ)

command or renamed using the Rename Object (RNMOBJ) command, and a new data queue is

created with the same name and library as the data queue that was renamed or moved, then, the

job continues to reference the original data queue, not the newly created data queue.

The actual name of the data queue and the library in which it is found are returned by this API.

RDQD0100 Format

The following table shows the information placed in the receiver variable parameter for the RDQD0100

format. For a detailed description of each field, see “Field Descriptions” on page 16.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Message length

12 C BINARY(4) Key length

16 10 CHAR(1) Sequence

17 11 CHAR(1) Include sender ID

18 12 CHAR(1) Force indicator

19 13 CHAR(50) Text description

69 45 CHAR(1) Type of data queue

70 46 CHAR(1) Automatic Reclaim

71 47 CHAR(1)

Enforce data queue locks

72 48 BINARY(4) Number of messages

76 4C BINARY(4) Number of entries currently allocated

80 50 CHAR(10) Data queue name used

90 5A CHAR(10) Data queue library used

100 64 BINARY(4) Maximum number of entries allowed

104 68 BINARY(4) Initial number of entries

108 6C BINARY(4) Maximum number of entries specified

112 70 CHAR(8) Last reclaim date and time

Object APIs 15

RDQD0200 Format

The following table shows the information placed in the receiver variable parameter for the RDQD0200

format. For a detailed description of each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) APPC device description

18 12 CHAR(8) Mode

26 1A CHAR(8) Remote location name

34 22 CHAR(8) Local location name

42 2A CHAR(8) Remote network identifier

50 32 CHAR(10) Remote data queue name

60 3C CHAR(10) Remote data queue library name

70 46 CHAR(10) Data queue name used

80 50 CHAR(10) Data queue library used

90 5A CHAR(18) Relational database name

Field Descriptions

APPC device description. The name of the APPC device description on the source system that is used

with this DDM data queue. The special value *LOC can be returned. This is the name that was specified

on the DEV parameter of the CRTDTAQ command. This will be blank for RDB type DDM data queues.

Automatic reclaim. Whether or not the data queue has the amount of storage allocated for the queue

reclaimed when the queue is empty.

Possible values returned are:

 0 Storage is not reclaimed.

1 Storage is reclaimed when the queue is empty. The amount of storage allocated will be set to the initial

number of entries.

This will be blank for a DDM data queue.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Data queue library used. The library in which the data queue is found. If *LIBL or *CURLIB is specified

for the library name, this field is the actual name of the library in which the data queue was found. If a

specific library (not *LIBL or *CURLIB) is specified, and the data queue is moved from that library to a

different library after this job first accessed the data queue, this will be set to the name of the library in

which the data queue currently exists.

Data queue name used. The name of the data queue. This will be the same as the name specified unless

the data queue was renamed after this job first accessed the data queue.

16 System i: Programming Object APIs

Enforce data queue locks. Identifies whether or not IBM-supplied data queue operations will enforce a

lock on the data queue. This attribute cannot be specified on the Create Data Queue (CRTDTAQ) CL

Command. The default when a data queue is created is for locks to be ignored. A data queue can be

locked with the Allocate Object (ALCOBJ) CL Command. When locks are enforced, performance can be

degraded due to the additional locking performed by all data queue operations.

Possible values returned are:

 0 Locks on the data queue are ignored by IBM-supplied data queue operations.

1 Locks on the data queue are enforced by IBM-supplied data queue operations.

This will be blank for a DDM data queue.

Force indicator. Whether or not the data queue is forced to auxiliary storage when entries are sent or

received for the specified data queue.

Possible values returned are:

 Y The data queue is forced to auxiliary storage after entries are sent or received.

N The data queue is not forced to auxiliary storage after entries are sent or received.

This will be blank for a DDM data queue.

Include sender ID. If the queue was created to include the sender ID with sent messages.

Possible values returned are:

 Y The sender ID is included when data is sent to the data queue.

N The sender ID is not included when data is sent to the data queue.

This will be blank for a DDM data queue.

Initial number of entries. The number of messages that will fit into the storage allocated for the data

queue when it is created or when it is automatically reclaimed. This will be 0 for a DDM data queue.

Key length. If the specified data queue was created as a keyed type, this field contains the length, in

bytes, of the message reference key. Values range from 1 to 256. If the specified queue is not a keyed

queue or is a DDM data queue, the value is 0.

Last reclaim date and time. The date and time that the last automatic reclaim was done. Its format is a

system time stamp (*DTS). The Convert Date and Time Format (QWCCVTDT) API can be used to convert

this time stamp to a character format. This will be hex zeroes for a DDM data queue or when no reclaim

has occurred for a standard data queue.

Local location name. The name of the local location. The special values *LOC and *NETATR can be

returned. This is the name that was specified on the LCLLOCNAME parameter of the CRTDTAQ

command. This will be blank for RDB type DDM data queues.

Maximum number of entries allowed. The maximum number of messages that will fit into the data

queue when it is full. This will be 0 for a DDM data queue.

Object APIs 17

qwccvtdt.htm

Maximum number of entries specified. The maximum number of messages that was specified on the

SIZE keyword of the CRTDTAQ command. This will be 0 for a DDM data queue. This will be set to -1

for data queues created prior to release V4R5M0, when support for the SIZE keyword was added to the

CRTDTAQ command.

The number of entries specified or one of the following special values will be returned:

 -1 *MAX16MB was specified for the data queue size.

-2 *MAX2GB was specified for the data queue size.

Message length. The maximum length allowed for messages. The is the value that was specified with the

MAXLEN keyword on the CRTDTAQ command. This will be 0 for a DDM data queue.

Mode. The mode name used with the remote location name to communicate with the target system. The

special value *NETATR can be returned. This is the name that was specified on the MODE parameter of

the CRTDTAQ command. This will be blank for RDB type DDM data queues.

Number of entries currently allocated. The number of entries that will fit into the data queue before it is

extended. When the queue is extended, additional storage is allocated for the queue. The data queue can

be extended until it reaches the value for the maximum number of entries allowed. This will be 0 for a

DDM data queue.

Number of messages. The number of messages currently on the data queue. This will be 0 for a DDM

data queue.

Relational database name. The name of the relational database entry that identifies the target system or

target ASP group. This field will be set to blanks unless the data queue is an RDB type DDM data queue.

This is the name that was specifed on the RDB parameter of the CRTDTAQ command.

Remote data queue library name. The name of the library for the remote data queue on the target

system. The special values *LIBL and *CURLIB can be returned. This is the data queue name that was

specified on the RMTDTAQ parameter of the CRTDTAQ command.

Remote data queue name. The name of the remote data queue on the target system. This is the data

queue name that was specified on the RMTDTAQ parameter of the CRTDTAQ command.

Remote location name. The name of the remote location that is used with this object. This is the name

that was specified on the RMTLOCNAME parameter of the CRTDTAQ command. A special value of

*RDB indicates that the remote location information from the relational database entry returned in the

relational database entry name field is used to determine the remote system.

Remote network identifier. The remote network identifier in which the remote location used to

communcate with the target system. The special values *LOC, *NETATR, and *NONE can be returned.

This is the name that was specified on the RMTNETID parameter of the CRTDTAQ command. This will

be blank for RDB type DDM data queues.

Sequence. The sequence in which messages can be removed from the queue.

Possible values returned are:

 F First-in first-out

K Keyed

L Last-in first-out

This will be blank for a DDM data queue.

18 System i: Programming Object APIs

Text description. The text description of the data queue. The field contains blanks if no text description

was specified when the data queue was created.

Type of data queue.

This will be set to one of the following values:

 0 The data queue is a standard data queue.

1 The data queue is a DDM data queue.

Error Messages

 Message ID Error Message Text

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9509 E Space access error.

CPF9516 E Format &1 not allowed for data queue.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve Data Queue Message (QMHRDQM) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Qualified data queue name Input Char(20)

5 Message selection information Input Char(*)

6 Length of message selection information Input Binary(4)

7 Message selection information format name Input Char(8)

8 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve Data Queue Message (QMHRDQM) API retrieves one or more messages from a data queue.

Object APIs 19

#TOP_OF_PAGE
aplist.htm

The QMHRDQM API allows the retrieval of multiple messages per call. The message selection

information parameter allows you to have some control over which messages are returned. The

QMHRDQM API can be used to retrieve the following:

v The first or last message of a data queue

v All messages of a data queue

v Selected messages from a keyed data queue

The QMHRDQM API is similar in function to the QRCVDTAQ API. However, the QRCVDTAQ API can

remove the received message from the data queue; QMHRDQM API does not remove received messages.

Distributed data management (DDM) data queues are not supported using this API.

Authorities and Locks

Data Queue Authority

*OBJOPR and *READ

Data Queue Library Authority

*EXECUTE

Data Queue Lock

*SHRRD, after the data queue is changed to enforce data queue locks via the Change Data

Queue (QMHQCDQ) API.

 Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),

QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a

cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized

to the data queue. An entry is added to the cache when a user calling one of the APIs has the required

authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a

journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting

the the send function has the required authority to the current profile name in the sender ID information

of the journal entry. The data in the cache is used until the job ends, so if you need to immediately

change a user’s authority to one of these objects, you may need to end that user’s jobs.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes

Format name

INPUT; CHAR(8)

 The format of the data to be placed in the receiver variable.

The valid format names are:

 “RDQM0100 Format” on page

22

Retrieved data queue message(s) information.

20 System i: Programming Object APIs

“RDQM0200 Format” on page

22

Retrieved data queue message(s) information.

The RDQM0200 format differs from RDQM0100 in that when the user requests to retrieve the

number of bytes equal to the maximum message entry size specified, this returns the length and

data of the message entry that was enqueued instead of the maximum length and data contained

in the data queue entry. Therefore, the repeating fields at the end of format RDQM0200 could

require less space than format RDQM0100, which uses the same amount of space for each entry

retrieved from the queue.

Qualified data queue name

INPUT; CHAR(20)

 The data queue whose description is to be returned. The first 10 characters contain the data

queue name, and the second 10 characters contain the data queue library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Note: To improve data queue performance, the data queue APIs remember addressing

information for the last data queues used. When this occurs, a specific (not *LIBL or *CURLIB)

value is provided for the library name, and the data queue is located in the system auxiliary

storage pool (ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing

information for data queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following

scenario:

If, a job references a data queue, the data queue is moved using the Move Object (MOVOBJ)

command or renamed using the Rename Object (RNMOBJ) command, and a new data queue is

created with the same name and library as the data queue that was renamed or moved, then, the

job continues to reference the original data queue, not the newly created data queue.

Message selection information

INPUT; CHAR(*)

 Identifies which message (or messages) you want to retrieve. The layout of this parameter is

determined by the value of the message selection information format name.

Length of message selection information

INPUT; BINARY(4)

 The length of the message selection information parameter. This must be 8 bytes for RDQS0100

and 16 bytes plus the size of the key for RDQS0200.

Message selection information format name

INPUT; CHAR(8)

 The format of the message selection information parameter.

The following format names can be used:

 “RDQS0100 Format” on page

23

Format to select messages when using nonkeyed data queues.

“RDQS0200 Format” on page

23

Format to select messages when using keyed data queues.

Error code

I/O; CHAR(*)

Object APIs 21

The structure in which to return error information. For the format of the structure, see Error code

parameter.

RDQM0100 Format

The following table lists the fields returned in the RDQM0100 format of the receiver variable parameter.

For a detailed description of each field, see “Field Descriptions” on page 24.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of messages returned

12 C BINARY(4) Number of messages available

16 10 BINARY (4) Message key length returned

20 14 BINARY(4) Message key length available

24 18 BINARY(4) Maximum message text length requested

28 1C BINARY(4) Maximum message text length available

32 20 BINARY(4) Entry length returned

36 24 BINARY(4) Entry length available

40 28 BINARY(4) Offset to first message entry

44 2C CHAR(10) Actual data queue library name

54 36 CHAR(*) Reserved

These fields repeat for

each message retrieved.

BINARY(4) Offset to next message entry

CHAR(8) Message enqueue date and time

CHAR(*) Message key

CHAR(*) Message text

CHAR(*) Reserved

RDQM0200 Format

The following table lists the fields returned in the RDQM0200 format of the receiver variable parameter.

For a detailed description of each field, see “Field Descriptions” on page 24.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of messages returned

12 C BINARY(4) Number of messages available

16 10 BINARY (4) Message key length returned

20 14 BINARY(4) Message key length available

24 18 BINARY(4) Maximum message text length requested

28 1C BINARY(4) Maximum message text length available

32 20 CHAR(8) Reserved

22 System i: Programming Object APIs

Offset

Type Field Dec Hex

40 28 BINARY(4) Offset to first message entry

44 2C CHAR(10) Actual data queue library name

54 36 CHAR(*) Reserved

These fields repeat for

each message retrieved.

BINARY(4) Offset to next message entry

CHAR(8) Message enqueue date and time

BINARY(4) Enqueued message entry length

CHAR(*) Message key

CHAR(*) Message text

CHAR(*) Reserved

RDQS0100 Format

The following table describes the RDQS0100 format of the Message selection information parameter. This

format is used with data queues when selection with keys is not necessary. This format cannot be used

with keyed data queues. To retrieve messages using keys and key search order, use format RDQS0200.

For a detailed description of each field, see “Field Descriptions” on page 24.

For example, to retrieve the first 10 bytes of the last entry in a data queue specify the following:

Parameter seven would contain a format name of ’RDQS0100’ and parameter five would consist of a

Selection type of ’L’, the Reserved field would be blanks, and Number of message text bytes to retrieve

would be 10.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Selection type

1 1 CHAR(3) Reserved

4 4 BINARY(4) Number of message text bytes to retrieve

RDQS0200 Format

The following table describes the RDQS0200 format of the Message selection information parameter. This

format is used to retrieve messages from data queues when selection with keys is necessary. When using

this format, all messages satisfying the key search order are returned. For a detailed description of each

field, see “Field Descriptions” on page 24.

Note: This format is valid only if the queue was created as a keyed data queue.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Selection type

1 1 CHAR(2) Key search order

3 3 CHAR(1) Reserved

4 4 BINARY(4) Number of message text bytes to retrieve

8 8 BINARY(4) Number of message key bytes to retrieve

Object APIs 23

Offset

Type Field Dec Hex

12 C BINARY(4) Length of Key

16 10 CHAR(*) Key

Field Descriptions

Actual data queue library name. The library in which the data queue was found. This name is found by

searching the library list (*LIBL) or the current library (*CURLIB). If the data queue is in a library other

than your current library or library list, it will not be found.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Enqueued message entry length. The number of bytes specified for the message entry length when the

entry was placed on the data queue. For a data queue created with SENDERID(*YES), this length is the

message entry length specified plus 36 bytes for the sender ID. This is the number of bytes returned in

the message text field unless the number of message text bytes to retrieve field is less than this value. In

that case, the maximum message text length requested is returned in the message text field.

Entry length available. The total number of bytes available to be retrieved for each message entry.

Entry length returned. The number of bytes retrieved for each message entry.

Key. The key field to be compared with the actual keys of the messages on the data queue.

Key search order. A relational operator specifying the comparison criteria between the message key

specified in the RDQS0200 format and the actual keys of messages in the data queue.

Valid values are:

 GT All messages with a key greater than that specified in the key field are to be returned.

LT All messages with a key less than that specified in the key field are to be returned.

NE All messages with a key not equal to that specified in the key field are to be returned.

EQ All messages with a key equal to that specified in the key field are to be returned.

GE All messages with a key greater than or equal to that specified in the key field are to be returned.

LE All messages with a key less than or equal to that specified in the key field are to be returned.

Length of key. The length of the data provided in the key field. This must be a value from 1 through 256.

Maximum message text length available. The maximum message entry size (in bytes) specified when the

data queue was created. For a data queue created with SENDERID(*YES), this length is the maximum

entry size plus 36 bytes for the sender ID.

Maximum message text length requested. The value specified in the message selection format

(RDQS0100 or RDQS0200) for the number of message text bytes to retrieve.

Message enqueue date and time. The date and time that the message was placed on the data queue. Its

format is a system time stamp (*DTS). The Convert Date and Time Format (QWCCVTDT) API can be

used to convert this time stamp to a character format.

24 System i: Programming Object APIs

qwccvtdt.htm

Message key. The key of the message.

Message key length available. The size (in bytes) of the key at the creation time of the data queue.

Message key length returned. The number of bytes retrieved in the message key field.

Message text. The text of the message. For the RDQM0100 format, the number of bytes of message text

returned is the maximum message text length requested. For the RDQM0200 format, the number of bytes

of message text returned is the minimum of the maximum message text length requested field or the

enqueued message entry length field. For example, with RDQM0200, if the maximum message text length

requested is less than the enqueued message entry length, some text of the data queue entry would not

be returned.

Number of message key bytes to retrieve. The number of message key bytes to return for each data

queue entry. The maximum value allowed is 256. If the number of bytes requested exceeds the actual

message key length, the key is padded with binary zeros. If the number of message key bytes requested

is less than the actual key, the key is truncated.

Number of message text bytes to retrieve. The number of message text bytes to return for each data

queue entry. The maximum value allowed is 65536. The maximum message text length returned field is

equal to this value. If the number of bytes requested exceeds the actual message text length, the text is

padded with binary zeros if the RDQM0100 format is used. If the RQDM0200 format is used, and the

actual message text length is less than the number of bytes requested, the number of bytes returned is the

actual message length, and no padding is done. If the number of message text bytes is less than the

actual text, the message text is truncated.

Number of messages available. The number of messages on the data queue that satisfy the search

criteria specified in the Message selection information parameter.

Number of messages returned. The number of messages retrieved.

Offset to first message entry. The offset at which the first message entry begins. If this value is 0, there is

no message available.

Offset to next message entry. The offset to the next message entry. If this value is 0, there are no more

messages returned.

Reserved. An unused field.

Selection type. Selection type depends on the format used.

For the RDQS0100 format, valid values are:

 A All messages are to be returned in the order based on the type of data queue. FIFO queues are returned in

FIFO order, LIFO queues are returned in LIFO order and keyed queues are returned in ascending key order.

F The first message is to be returned

L The last message is to be returned

R All messages are to be returned in reverse order of the type of data queue. For example, LIFO queues are

returned in FIFO order.

For the RDQS0200 format, valid values are:

 K Messages meeting the key criteria are to be returned

Object APIs 25

Error Messages

 Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9503 E Cannot lock data queue &1 in &2.

CPF9504 E An invalid search order was specified.

CPF9509 E Space access error.

CPF9511 E Function not supported for DDM data queue &1.

CPF950B E The specified selection type is not valid.

CPF950C E The specified retrieve length is not valid.

CPF950D E The specified message selection template length is not valid.

CPF950E E The data queue is not a keyed data queue.

CPF950F E The specified key length is not valid.

CPF9519 E Internal program error occurred.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Send Data Queue (QSNDDTAQ) API

 Required Parameter Group:

 1 Data queue name Input Char(10)

2 Library name Input Char(10)

3 Length of data Input Packed(5,0)

4 Data Input Char(*)

 Optional Parameter Group 1:

 5 Length of key data Input Packed(3,0)

6 Key data Input Char(*)

 Optional Parameter Group 2:

 7 Asynchronous request Input Char(10)

 Optional Parameter Group 3:

 8 Data is from a journal entry Input Char(10)

 Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 29.

26 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

The Send Data Queue (QSNDDTAQ) API sends data to the specified data queue. When an entry is sent

to a standard data queue, the storage allocated for each entry will be the value specified for the

maximum entry length on the Create Data Queue (CRTDTAQ) command.

Distributed data management (DDM) data queues are supported by this API. This means that you can

use this API to send data to a data queue that exists on a remote system.

Authorities and Locks

Data Queue Authority

*OBJOPR and *ADD

Data Queue Library Authority

*EXECUTE

When using optional parameter group 3 and the journal entry was deposited for a data queue with the sender ID

attribute set to *YES, authority to the current profile in the sender ID of the journal entry

*USE

Data Queue Lock

*SHRUPD, after the data queue is changed to enforce data queue locks via the Change Data

Queue (QMHQCDQ) API.

 Internally, when a job uses API QSNDDTAQ (Send Data Queue), QRCVDTAQ (Receive Data Queue),

QMHQRDQD (Retrieve Data Queue Description), or QMHRDQM (Retrieve Data Queue Message), a

cache is created to allow faster access to the data queue. An entry in the cache means a user is authorized

to the data queue. An entry is added to the cache when a user calling one of the APIs has the required

authority to the data queue. An entry is also added to the cache when QSNDDTAQ is called to handle a

journal entry for a data queue created with the sender ID attribute set to *YES, and the user requesting

the the send function has the required authority to the current profile name in the sender ID information

of the journal entry. The data in the cache is used until the job ends, so if you need to immediately

change a user’s authority to one of these objects, you may need to end that user’s jobs.

Required Parameter Group

Data queue name

INPUT; CHAR(10)

 The name of the data queue to send the data to.

Library name

INPUT; CHAR(10)

 The name of the library where the data queue resides.

You can use these special values for the library name:

 *LIBL The library list

*CURLIB The job’s current library.

Note: To improve data queue performance, the data queue APIs remember addressing

information for the last data queues used. This occurs when a specific (not *LIBL or *CURLIB)

value is provided for the library name, and the data queue is located in the system auxiliary

storage pool (ASP number 1) or a basic user ASP (ASP numbers 2-32). The addressing

information for data queues located in independent ASPs is not saved.

Because the addressing information is saved, users of this API should be aware of the following

scenarios.

Scenario 1

Object APIs 27

If, a job references a library-specific data queue, the data queue is moved using the Move Object

(MOVOBJ) command or renamed using the Rename Object (RNMOBJ) command, and a new data

queue is created with the same name and library as the data queue that was renamed or moved,

then, the job continues to reference the original data queue, not the newly created data queue.

Scenario 2

If, a job references a library-specific distributed data management (DDM) data queue, the DDM

data queue is moved using the Move Object (MOVOBJ) command or renamed using the Rename

Object (RNMOBJ) command, and a new data queue is created with the same name and library as

the DDM data queue that was renamed or moved, then, the job continues to reference the

original DDM data queue, not the newly created data queue.

Scenario 3

If, a job references a DDM data queue, which starts a DDM target job (DDM conversation) on a

remote system that references a library-specific data queue, the data queue on the remote system

is moved using the Move Object (MOVOBJ) command or renamed using the Rename Object

(RNMOBJ) command, and on the remote system, a new data queue is created with the same

name and library as the data queue that was renamed or moved, then, the DDM target job

continues to reference the original data queue on the remote system, not the newly created data

queue, only when the same DDM target job is used for the subsequent data queue operation. If a

new DDM target job is used for the subsequent data queue operation, then the newly created

data queue will be used on the remote system.

Note: For more information about creating DDM data queues and about DDM target jobs, see the

Distributed database programming topic collection.

Length of data

INPUT; PACKED(5,0)

 The number of characters to be sent to the data queue.

Note: An error occurs if the value specified is greater than the length specified by the maximum

lenght (MAXLEN) parameter on the Create Data Queue (CRTDTAQ) command, unless optional

parameter group 3 is specified. With optional parameter group 3, the length of the data provided

in the journal entry should be specified, and it could be longer than the maximum entry length.

This will be handled appropriately by the API.

Data INPUT; CHAR(*)

 The data to be sent to the data queue.

Note: If the length of this field is larger than the length of data parameter, only the number of

characters (beginning from the left) as defined by the length of data parameter are sent to the

data queue. If the length of this variable is smaller than the length of data parameter, unexpected

results can occur.

Optional Parameter Group 1

Length of key data

INPUT; PACKED(3,0)

 The number of characters in the key data parameter.

Note: The maximum value is the value that is specified on the KEYLEN parameter on the Create

Data Queue (CRTDTAQ) command.

Key data

INPUT; CHAR(*)

 The data sent to the data queue. This value must be at least as long as the value specified in the

length of key data parameter; otherwise, unexpected results can occur.

28 System i: Programming Object APIs

Optional Parameter Group 2

Asynchronous request

INPUT; CHAR(10)

 Whether the send data queue request to a DDM data queue should be processed asynchronously.

This parameter only applies to DDM data queues. Valid values are *YES and *NO. An error will

occur if *YES is specified for a non-DDM data queue. If the value *YES is specified for the

asynchronous request parameter for a DDM data queue and an error occurs on the operation, the

error will not be detected until the next time the data queue is accessed.

Note: If this parameter is specified, the key length and key data parameters must also be

specified even if they are not applicable. In that event, the key length should be zero and blanks

should be specified for the key data.

Optional Parameter Group 3

Data is from a journal entry

INPUT; CHAR(10)

 Indicate whether the data, in parameter four, came from a journal entry. This parameter only

applies to a non-DDM data queue. Valid values are *YES and *NO.

When using this parameter the data queue needs to have the same attributes as the journaled

data queue. To ensure the attributes of the data queue are the same as the journaled data queue,

save the journaled data queue and restore it to the system where this API will be called with

optional parameter group 3 specified. For information about journaling, see the Journal

management topic collection.

When *YES is specified for this parameter and the data for parameter four is from a data queue

that was created with SENDERID(*YES), then the sender id information from parameter four will

be used in the new data queue entry created by calling this API. That is, if the user in parameter

four is different than the user calling this API, then the sender id associated with the new data

queue entry will not contain the user that is calling this API.

Note: When using this parameter, the length of data in parameter three should be obtained from

the journal entry. The length could be longer than the maximum entry length of the data queue

and this will be handled appropriately by the API, an error will not be issued.

Note: If this parameter is specified, the key length, key data, and asynchronous request

parameters must also be specified even if they are not applicable. In that event, the key length

should be zero, key data should be blanks and *NO should be specified for the asynchronous

request.

Usage Notes

This API can be used in a multithreaded job to send entries to a non-DDM data queue. It cannot be used

in a job that allows multiple threads to send entries to a DDM data queue.

Error Messages

 Message ID Error Message Text

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF2498 E Invalid length. MAXLEN for data queue &1 in &2 is &3.

CPF3C90 E Literal value cannot be changed.

CPF6565 E User profile storage limit exceeded.

CPF9501 E Data queue &1 in &2 requires a key value.

CPF9502 E Key length must be zero for data queue &1 in &2.

CPF9503 E Cannot lock data queue &1 in &2.

Object APIs 29

Message ID Error Message Text

CPF9506 E Key length must be &3 for data queue &1 in &2.

CPF9507 E Invalid key length specified.

CPF9509 E Space access error.

CPF950A E Storage limit exceeded for data queue &1 in &2.

CPF9510 E Operation on DDM data queue &1 in &2 failed.

CPF9512 E Invalid asynchronous request.

CPF9513 E Asynchronous request must be *NO for data queue &1 in &2.

CPF9520 E Value for data is from a journal entry is not valid.

CPF9521 E Entry not sent. Data queue attributes do not match.

CPF9522 E Entry not sent. Data from a journal entry is not valid.

CPF9523 E Data queue function not successful.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 D Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R1

 Top | “Object APIs,” on page 1 | APIs by category

Image Catalog APIs

An image catalog is an object on the system that contains image catalog entries. Each catalog is associated

with one user-specified integrated file system directory.

The image catalog APIs are:

v “Retrieve Image Catalog Details (QVOIRCLD) API” (QVOIRCLD) retrieves the contents of an image

catalog.

v “Retrieve Image Catalogs (QVOIRCLG) API” on page 36 (QVOIRCLG) retrieves the list of image

catalog names based on the image catalog type parameter.

 “Object APIs,” on page 1 | APIs by category

Retrieve Image Catalog Details (QVOIRCLD) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Qualified image catalog name Input Char(20)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: No

The Retrieve Image Catalog Details (QVOIRCLD) API retrieves the contents of an image catalog. The

QVOIRCLD API places the information in the receiver variable.

30 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm

Authorities and Locks

Image Catalog Authority

*USE

Image Catalog Library Authority

*EXECUTE

Image Catalog Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the catalog information. You can specify the size of the

area to be smaller than the format requested as long as you specify the length parameter

correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable specified in the user program. If the length of

the receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of image catalog entries to list. You can use one of the following format names:

 “Format RCLD0100” Header information only.

“Format RCLD0200” on

page 32

Header information and entry list for optical image catalogs.

“Format RCLD0300” on

page 33

Header information and entry list for tape image catalogs.

Qualified image catalog name

INPUT; CHAR(20)

 The image catalog about which to list information, and the library in which it is located. The first

10 characters contain the object name, and the second 10 characters contain the library name.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format RCLD0100

For detailed descriptions of the fields in this table, see “Field Descriptions” on page 33.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Image catalog type

Object APIs 31

Offset

Type Field Dec Hex

9 9 CHAR(1) Image catalog status

10 A CHAR(1) Reference image catalog indicator

11 B CHAR(1) Dependent image catalog indicator

12 C CHAR(50) Image catalog text

62 3E CHAR(10) Virtual device name

72 48 BINARY(4) Offset to image catalog directory

76 4C BINARY(4) Number of image catalog directories

80 50 BINARY(4) Length of image catalog directory

84 54 BINARY(4) CCSID of image catalog directory

88 58 BINARY(4) Offset to first image catalog entry

92 5C BINARY(4) Number of image catalog entries returned

96 60 BINARY(4) Length of image catalog entry

100 64 BINARY(4) Number of image catalog entries

104 68 CHAR(10) Reference image catalog name

114 72 CHAR(10) Reference image catalog library name

124 7C CHAR(6) Next tape volume

130 82

CHAR(*) Reserved

 CHAR(*) Image catalog directory

Format RCLD0200

For detailed descriptions of the fields in this table, see “Field Descriptions” on page 33.

 Offset

Type Field Dec Hex

0 0 Returns everything from format RCLD0100

These fields repeat, in

the order listed, for the

number of image

catalog entries

returned.

BINARY(4) Image catalog entry index

CHAR(1) Image catalog entry status

CHAR(100) Image catalog entry text

CHAR(1) Write protect status

CHAR(32) Volume name

CHAR(1) Access information

CHAR(1) Reserved

BINARY(4) Image size

BINARY(4) Length of image file name

CHAR(512) Image file name

32 System i: Programming Object APIs

Format RCLD0300

For detailed descriptions of the fields in this table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 Returns everything from format RCLD0100

These fields repeat, in

the order listed, for the

number of image

catalog entries

returned.

BINARY(4) Image catalog entry index

CHAR(1) Image catalog entry status

CHAR(100) Image catalog entry text

CHAR(1) Write protect status

CHAR(6) Volume name

BINARY(4)

UNSIGNED

Maximum volume size

BINARY(8)

UNSIGNED

Current number of bytes available

BINARY(8)

UNSIGNED

Current number of bytes used by volume

BINARY(4)

UNSIGNED

Percent used (units in tenths)

BINARY(4)

UNSIGNED

First file sequence number in the virtual volume

BINARY(4)

UNSIGNED

Last file sequence number in the virtual volume

CHAR(1)

Next volume indicator

CHAR(10) Density

CHAR(1) Type of volume

BINARY(4) Length of image file name

CHAR(512) Image file name

BINARY(4)

UNSIGNED

Allocated volume size

Field Descriptions

Access information. The type of access allowed to this image catalog entry. The possible values are:

 0 Read only.

1 Read/Write.

Allocated volume size. The current allocated size of this virtual volume in megabytes.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

CCSID of image catalog directory. The CCSID of the image catalog directory returned.

Current number of bytes available. The current number of bytes available by this virtual volume.

Object APIs 33

Current number of bytes used by volume. The current number of bytes being used by this virtual

volume.

Density. The density associated with this image catalog entry.

Dependent image catalog indicator. An indicator of whether this image catalog is a dependent image

catalog. The possible values are:

 0 This catalog is not a dependent catalog.

1 This catalog is a dependent catalog.

First file sequence number in the virtual volume. The sequence number associated with the first file in

this virtual volume. The possible values are:

 0 Unknown.

1-n The sequence number associated with the first file in this virtual volume.

Image catalog directory. The Integrated File System (IFS) directory associated with the image catalog.

Image catalog entry index. The index number of this image catalog entry. An image catalog entry index

is a number between 1 and 256.

Image catalog entry status. The status of this image catalog entry. The possible values are:

 0 Unloaded.

1 Loaded.

2 Mounted.

3 Error.

Image catalog entry text. The text associated with this image catalog entry. This text will be returned in

UTF-16, coded character set identifier (CCSID) 1200.

Image catalog status. The current status of the image catalog. The status indicates whether the image

catalog is loaded into a virtual optical device or not. The possible values are:

 0 Not ready.

1 Ready.

Image catalog text. The text description associated with the image catalog.

Image catalog type. The type of this image catalog. The possible values are:

 0 This catalog is an optical catalog.

1 This catalog is a tape catalog.

Image file name. The Integrated File System name of this image catalog entry. The image catalog entry

name returned will be represented in UTF-16.

Image size. The size of the optical image file in MB. The possible values are:

 0 The size is not available (for example, the entry is not mounted, or the image file is not available).

n The size of the optical image file in MB.

34 System i: Programming Object APIs

Last file sequence number in the virtual volume. The sequence number associated with the last file in

this image. The possible values are:

 0 Unknown.

1-n The sequence number associated with the last file in this virtual volume.

Length of image catalog directory. The length, in bytes, of the image catalog directory that is associated

with the image catalog.

Length of image catalog entry. The length of each image catalog entry in the image catalog.

Length of image file name. The length, in bytes, of the image file name.

Maximum volume size. The maximum size allowed for this virtual volume in megabytes.

Next tape volume. Because no volume is currently mounted, this volume will be the one used by

VOL(*MOUNTED). The following special value may be returned:

 *NONE The catalog is an optical catalog, or there is a mounted entry, or no volume is available to be used.

Next volume indicator. Indicates if the volume is the one that will be used by VOL(*MOUNTED)

because no volume is currently mounted. The possible values are:

 0 This volume is not the next tape volume.

1 This volume is the next tape volume.

Number of image catalog directories. The number of image catalog directories associated with this

image catalog.

Number of image catalog entries. The number of image catalog entries in the image catalog.

Number of image catalog entries returned. The number of image catalog entries returned. When format

RCLD0100 is specified, this field will be zero.

Offset to first image catalog entry. The offset to the first image catalog entry. When format RCLD0100 is

specified, this field will be zero.

Offset to image catalog directory. The offset to the image catalog directory name.

Percent used (units in tenths). The percentage of this virtual volume that has been used.

Reference image catalog indicator. An indicator of whether a dependent image catalog was created, with

this catalog as the reference image catalog. The possible values are:

 0 This catalog is not a reference catalog.

1 This catalog is a reference catalog.

Reference image catalog library name. The library containing the image catalog that was named as the

reference catalog when this catalog was created. If this image catalog is not a dependent image catalog,

this field will be blank.

Reference image catalog name. The image catalog named as the reference catalog when this catalog was

created. If this image catalog is not a dependent image catalog, this field will be blank.

Object APIs 35

Reserved. Space included for alignment.

Type of volume. The type associated with this image catalog entry. The possible values are:

 0 This is a nonlabeled virtual volume.

1 This is a standard labeled virtual volume.

2 The type of this virtual volume is unknown.

Virtual device name. The name of the virtual device that this image catalog is associated with. A blank

virtual device name indicates that the catalog is not associated with a virtual device.

Volume name. The volume name of this virtual volume.

Write protect status. An indicator of whether this image file is write protected or not. The possible values

are:

 0 Not write protected.

1 Write protected.

2 Unknown.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9810 E Library &1 not found.

CPFBC45 E Image catalog &1 not found.

CPFBC4B E Image catalog &1 in use.

API introduced: V5R4

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve Image Catalogs (QVOIRCLG) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Image catalog type Input Char(1)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: No

36 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

The Retrieve Image Catalogs (QVOIRCLG) API retrieves the list of image catalog names based on the

image catalog type parameter.

Authorities and Locks

Image Catalog Authority

*USE

Image Catalog Library Authority

*EXECUTE

Image Catalog Lock

None

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable specified in the user program. If the length of

the receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of image catalogs to retrieve. You can use one of the following format names:

 “Format

RCLG0100” on

page 38

Catalog list information.

Image catalog type

INPUT; CHAR(1)

 The type of image catalogs to include in the list. You can specify one of the following types:

 0 Specify this value to get all types of image catalogs.

1 Specify this value to get optical type image catalogs.

2 Specify this value to get tape type image catalogs.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Object APIs 37

Format RCLG0100

For detailed descriptions of the fields in this table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to first image catalog in list

12 C BINARY(4) Number of image catalogs returned

16 10 BINARY(4) Length of image catalog list entry

20 14 BINARY(4) Number of image catalogs

24 18 CHAR(*) Reserved

 CHAR(*) Image catalog list

Image Catalog List Entry

For detailed descriptions of the fields in this table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Image catalog name

10 A CHAR(10) Image catalog library name

20 14 CHAR(1) Image catalog type

21 15 CHAR(1) Image catalog status

22 16 CHAR(50) Image catalog text

72 48 CHAR(10) Virtual device name

82 52 BINARY(4) Virtual device status

86 56 CHAR(1) Reference image catalog indicator

87 57 CHAR(1) Dependent image catalog indicator

88 58 CHAR(10) Reference image catalog name

98 62 CHAR(10) Reference image catalog library name

108 6C CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Dependent image catalog indicator. An indicator of whether this image catalog is a dependent image

catalog. The possible values are:

 0 This catalog is not a dependent catalog.

1 This catalog is a dependent catalog.

38 System i: Programming Object APIs

Image catalog library name. The name of the library containing the image catalog.

Image catalog list. The list of image catalogs and information.

Image catalog name. The name of the image catalog from which the information was retrieved.

Image catalog status. The current status of the image catalog. The possible values are:

 0 Not ready.

1 Ready.

2 Unknown.

Image catalog text. The text associated with this image catalog.

Image catalog type. The type of this image catalog. The possible values are:

 0 Optical type image catalog.

1 Tape type image catalog.

Length of image catalog list entry. The length of each image catalog entry in the list.

Number of image catalogs. The number of image catalogs on the system of the type specified.

Number of image catalogs returned. The number of image catalogs returned.

Offset to first image catalog in list. The offset to the first image catalog in the list.

Reference image catalog indicator. An indicator of whether a dependent image catalog was created, with

this catalog as the reference image catalog. The possible values are:

 0 This catalog is not a reference catalog.

1 This catalog is a reference catalog.

Reference image catalog library name. The library containing the image catalog that was named as the

reference catalog when this catalog was created. If this image catalog is not a dependent image catalog,

this field will be blank.

Reference image catalog name. The image catalog named as the reference catalog when this catalog was

created. If this image catalog is not a dependent image catalog, this field will be blank.

Reserved. Space included for alignment.

Virtual device name. The name of the virtual device associated with the image catalog. A blank virtual

device name indicates that the catalog is not associated with a virtual device.

Virtual device status. The current status of the virtual device. The possible values are:

 0 Varied off.

1 Varied on.

2 Active.

3 No virtual device.

Object APIs 39

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF9802 E Not authorized to object &2 in &3.

API introduced: V5R4

 Top | “Object APIs,” on page 1 | APIs by category

User Queue APIs

The user queue APIs let you create and delete user queues. User queues are permanent objects with an

object type of *USRQ. They provide a way for one or more processes to communicate asynchronously.

For additional information, see “Using User Queue APIs” on page 189.

The user queue APIs are:

v “Create User Queue (QUSCRTUQ) API” (QUSCRTUQ) creates a user queue in either the user domain

or the system domain, based on the input parameters.

v “Delete User Queue (QUSDLTUQ) API” on page 46 (QUSDLTUQ) deletes user queues created with the

Create User Queue (QUSCRTUQ) API.

 “Object APIs,” on page 1 | APIs by category

Create User Queue (QUSCRTUQ) API

 Required Parameter Group:

 1 Qualified user queue name Input Char(20)

2 Extended attribute Input Char(10)

3 Queue type Input Char(1)

4 Key length Input Binary(4)

5 Maximum message size Input Binary(4)

6 Initial number of messages Input Binary(4)

7 Additional number of messages Input Binary(4)

8 Public authority Input Char(10)

9 Text description Input Char(50)

 Optional Parameter Group 1:

 10 Replace Input Char(10)

11 Error code I/O Char(*)

 Optional Parameter Group 2:

 12 Domain Input Char(10)

13 Pointers Input Char(10)

40 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm

Optional Parameter Group 3:

 14 Number of queue extensions Input Binary(4)

15 Reclaim storage Input Char(1)

 Default Public Authority: *USE
 Threadsafe: Yes

The Create User Queue (QUSCRTUQ) API creates a user queue in either the user domain or the system

domain, based on the input parameters. A user-domain user queue can be directly manipulated with MI

instructions. If you are running at security level 40 or greater, you cannot directly manipulate a

system-domain user queue using MI instructions.

If the number of queue extensions is not specified, user queues can grow to a maximum of 16MB in size,

though some of that is used for the queue definition. If the number of queue extensions is specified and

non-zero, the queue will be extended by the number of additional messages specified until either the

number of queue extensions is reached or the storage limit of 2GB is reached.

The system can automatically extend user queues, so you should create a small queue and allow the

system to extend the queue as needed. Smaller queues provide better performance and use less storage.

However, the system does not automatically reduce the size of the queue if it is too large. If you specify

the additional number of messages as 0, the system does not extend the user queue you create when the

queue is full.

To decrease the size of a user queue, a user must delete the queue and create it again.

There are no APIs to manipulate user queue entries. If you must access a user queue object in a library

that does not permit user-domain user objects, you must use data queue objects. For information about

data queues, see the CL programming topic.

If you need to know into which domain the user queue object was created, use either of the following

APIs to retrieve that information:

v Retrieve Object Description (QUSROBJD) API

v List Object (QUSLOBJ) API

Note: For performance reasons, the *USRQ object is created before checking to see if it exists in the

library specified for the qualified user queue name. If you have an application using this API repeatedly,

even if you are using *NO for the replace parameter, permanent system addresses will be used.

Note:User queues created with either the number of queue extensions parameter specified with a

positive, non-zero number or the reclaim storage parameter specified to reclaim the user queue storage

are not eligible to save to a pre-V4R5 system.

Authorities and Locks

Library Authority

*READ and *ADD.

User Queue Authority

*OBJMGT, *OBJEXIST, and *READ. These authorities are required only if the replace parameter is

used and if there is an existing user queue to replace.

User Queue Lock

*EXCL. This applies to both the user queue being created and an existing user queue being

replaced.

Object APIs 41

Required Parameter Group

Qualified user queue name

INPUT; CHAR(20)

 The first 10 characters contain the user queue name, and the second 10 characters contain the

name of the library where the user queue is located. The only special value supported is

*CURLIB.

User queues created in the QTEMP and QRPLOBJ libraries are not forced to permanent storage;

they are deleted when those libraries are cleared at sign-off and system IPL, respectively.

Extended attribute

INPUT; CHAR(10)

 The extended attribute of the user queue. For example, an object type of *FILE has an extended

attribute of PF (physical file), LF (logical file), DSPF (display file), SAVF (save file), and so on.

The extended attribute must be a valid *NAME. You can enter this parameter in uppercase,

lowercase, or mixed case. The API automatically converts it to uppercase.

Queue type

INPUT; CHAR(1)

 The sequence in which messages are to be dequeued from the queue. The valid values are:

 F First-in first-out

K Keyed

L Last-in first-out

Key length

INPUT; BINARY(4)

 The length in bytes of the message key from 1 to 256 if you specify the queue type as keyed. If

you specify that the queue is not a keyed queue, the value must be 0.

Maximum message size

INPUT; BINARY(4)

 The maximum allowed size of messages to be placed on the queue. The API truncates messages

that are longer than the value you specify. The maximum size allowed is 64 000 bytes.

Initial number of messages

INPUT; BINARY(4)

 The initial number of messages that the queue can contain.

Additional number of messages

INPUT; BINARY(4)

 The amount to increase the maximum number of messages value when the queue is full. When

this parameter is set to 0, the queue is not extended if an overflow occurs and an error message

is sent to the program attempting to place a message on the queue.

Public authority

INPUT; CHAR(10)

 The authority you give to the users who do not have specific private or group authority to the

user queue. Once the user queue has been created, its public authority stays the same when it is

moved to another library or restored from backup media.

If the replace parameter is used and a user queue exists to be replaced, this parameter is ignored.

All authorities are transferred from the replaced user queue to the new one.

42 System i: Programming Object APIs

The valid values for this parameter are:

 *ALL The user can perform all authorized operations on the user queue.

Authorization list

name

The user queue is secured by the specified authorization list, and its public authority is set to

*AUTL. The specified authorization list must exist on the system when this API is issued. If it

does not exist, the create process fails, and an error message is returned to the application.

*CHANGE The user has read, add, update, and delete authority to the user queue and can read the object

description.

*EXCLUDE The user cannot access the user queue in any way.

*LIBCRTAUT The public authority for the user queue is taken from the CRTAUT value for the target library

when the object is created. If the CRTAUT value for the library changes later, that change does not

affect user queues already created. If the CRTAUT value contains an authorization list name and

that authorization list secures an object, do not delete the list. If you do, the next time you call this

API with the *LIBCRTAUT parameter, it will fail.

*USE The user can read the object description and the user queue’s contents but cannot change them.

Text description

INPUT; CHAR(50)

 A brief description of the user queue.

Optional Parameter Group 1

Replace

INPUT; CHAR(10)

 Whether to replace an existing user queue. Valid values for this parameter are:

 *NO Do not replace an existing user queue of the same name and library. *NO is the default.

*YES Replace an existing user queue of the same name and library.

The user queue being replaced is destroyed if both:

v The user queue you are replacing is in the user domain.

v The allow user domain (QALWUSRDMN) system value is not set to *ALL or does not contain

the library QRPLOBJ.

If the QRPLOBJ library is specified in the QALWUSRDMN system value, then the replaced

user-domain user queue is moved to the QRPLOBJ library. If the user queue is in the system

domain, it is moved to the QRPLOBJ library, which is cleared at system IPL. For details about

authorities, ownership, and renaming, see the discussion of the REPLACE parameter in the

Control language topic collection.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Domain

INPUT; CHAR(10)

 The domain into which the user queue should be created. If this parameter is not specified, the

value of *DEFAULT will be assumed by the API. Valid values for this parameter are:

 *DEFAULT Allows the system to decide into which domain the object should be created.

Object APIs 43

*SYSTEM Creates the user queue object into the system domain. The API can always create a user queue

into the system domain regardless of the security level you are running at. However,

system-domain user queues can only be used at security level 30 and below because there are no

APIs to access user queues.

*USER Attempts to create the user queue object into the user domain. This is not always possible. If the

library you are creating the user queue into does not appear in the QALWUSRDMN system value,

the API cannot create the user queue into the user domain. An error message will be returned.

The API uses the following criteria to determine into which domain to create the user queue. The

destination library is the library you specified in the qualified user queue name parameter. The

optional domain parameter is the information specified in the domain parameter.

User Queue domain table

 QALWUSRDMN System

Value Destination Library

Optional Domain

Parameter Domain of Created Object

*ALL Any *DEFAULT User domain

*ALL Any *SYSTEM System domain

*ALL Any *USER User domain

QTEMP QTEMP *DEFAULT User domain

QTEMP QTEMP *SYSTEM System domain

QTEMP QTEMP *USER User domain

Does not contain library

name Library name *DEFAULT System domain

Does not contain library

name Library name *SYSTEM System domain

Does not contain library

name Library name *USER None; error is returned

Note: The QALWUSRDMN system value lists the libraries into which the user domain objects can be created. The

libraries include special value *ALL or a list of one or more library names.

Pointers

INPUT; CHAR(10)

 Whether or not the user queue messages can contain pointer data or not. If this parameter is not

specified, *NO is assumed.

 *YES Messages can contain pointer and scalar data. Messages to be enqueued must be 16-byte aligned,

regardless of whether or not the message contains pointer data. Only user-domain user queues can

contain pointer data; therefore, queues that support pointers cannot be created in or restored to a library

that is not permitted by system value QALWUSRDMN. User queues that can contain pointers cannot be

saved to a release prior to Version 2 Release 3 Modification Level 0.

*NO Messages can contain scalar data only. (User queues created prior to Version 2 Release 3 Modification

Level 0 contain scalar data only). The user queue can be in either the system domain or the user

domain.

Optional Parameter Group 3

Number of queue extensions

INPUT; BINARY(4)

 The maximum number of extensions allowed for the user queue. A value of -1 indicates that the

maximum number of extensions will be chosen by the machine. If this parameter is not specified,

0 is assumed.

44 System i: Programming Object APIs

Reclaim storage

INPUT; CHAR(1)

 Whether storage reclaim will be attempted when the number of currently enqueued messages in

the user queue reaches zero. Allowable values are:

 0 Do not reclaim storage when the user queues have no currently enqueued messages. 0 is the default value.

1 Reclaim storage when the user queues have no currently enqueued messages.

Error Messages

 Message ID Error Message Text

CPF2143 E Cannot allocate object &1 in &2 type *&3.

CPF2144 E Not authorized to &1 in &2 type *&3.

CPF2283 E Authorization list &1 does not exist.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C02 E User queue &1 not created.

CPD3C01 D Object name &1 is not valid.

CPD3C03 D Extended attribute &1 is not valid.

CPD3C05 D Value &1 for authority parameter is not valid.

CPD3C06 D Number of messages requested, &1, is too large for this queue.

CPD3C07 D Value &1 for queue type parameter is not valid.

CPD3C08 D Initial number of queue messages specified, &1, is not valid.

CPD3C09 D Extension parameter value &1 for queue overflow is not valid.

CPD3C10 D Value &1 for key length parameter is not valid.

CPD3C11 D Value &1 for maximum message size parameter is not valid.

CPF3C08 E Initial number of queue messages specified, &1, is not valid.

CPF3C09 E Extension parameter value &1 for queue overflow is not valid.

CPF3C10 E Value &1 for key length parameter is not valid.

CPF3C11 E Value &1 for maximum message size parameter is not valid.

CPF3C2B E Extended attribute &1 is not valid.

CPF3C2D E Value &1 for authority parameter is not valid.

CPF3C2E E Number of messages requested, &1, is too large for this queue.

CPF3C2F E Value &1 for queue type parameter not valid.

CPF3C29 E Object name &1 is not valid.

CPF3C34 E Value &1 for replace option is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C45 E Value &1 not valid for domain parameter.

CPF3C46 E Value &1 not valid for pointers parameter.

CPF3C47 E Pointers not valid for system domain user queue.

CPF3C49 E Request for user domain object cannot be granted.

CPF3C90 E Literal value cannot be changed.

CPF3C94 E Value &1 not valid for reclaim storage parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9870 E Object &2 type *&5 already exists in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 “Create User Queue (QUSCRTUQ) API” on page 40 | “Object APIs,” on page 1 | APIs by category

Object APIs 45

aplist.htm

Delete User Queue (QUSDLTUQ) API

 Required Parameter Group:

 1 Qualified user queue name Input Char(20)

2 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Delete User Queue (QUSDLTUQ) API deletes user queues created with the Create User Queue

(QUSCRTUQ) API. The Delete User Queue (DLTUSRQ) command has the same function.

Authorities and Locks

Library Authority

*EXECUTE

User Queue Authority

*OBJEXIST

User Queue Lock

*EXCL

Required Parameter Group

Qualified user queue name

INPUT; CHAR(20)

 The name of the user queue and the name of the library in which it resides. The first 10

characters contain the user queue name, and the second 10 characters contain the library name.

The user queue name can be either a specific name or a generic name, a string of one or more

characters followed by an asterisk (*). If you specify a generic name, QUSDLTUS deletes all user

queues that have names beginning with the string for which the user has authority.

You can use these special values for the library name:

 *ALL All libraries

*ALLUSR All user-defined libraries, plus libraries containing user data and having names starting with Q.

For information on the libraries included, see *ALLUSR in Generic library names.

*CURLIB The job’s current library

*LIBL The library list

*USRLIBL The user portion of the job’s library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF2105 E Object &1 in &2 type *&3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

46 System i: Programming Object APIs

Message ID Error Message Text

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted.

CPF2125 E No objects deleted.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Object APIs,” on page 1 | APIs by category

User Index APIs

The user index APIs allow you to:

v Create and delete user indexes

v Add, retrieve, and remove user index entries

v Retrieve the attributes of a user index

For additional information, see “Using User Index APIs” on page 190.

The user index APIs are:

v “Add User Index Entries (QUSADDUI) API” (QUSADDUI) allows you to add one or more new entries

or replace existing entries into the user index.

v “Create User Index (QUSCRTUI) API” on page 51 (QUSCRTUI) creates a user index.

v “Delete User Index (QUSDLTUI) API” on page 57 (QUSDLTUI) deletes a user index.

v “Remove User Index Entries (QUSRMVUI) API” on page 58 (QUSRMVUI) removes one or more user

index entries that match the remove criteria specified.

v “Retrieve User Index Attributes (QUSRUIAT) API” on page 63 (QUSRUIAT) retrieves information

about the user index attributes, including when it was created. It also retrieves the current operational

statistics of the user index.

v “Retrieve User Index Entries (QUSRTVUI) API” on page 66 (QUSRTVUI) retrieves user index entries

that match the search criteria specified.

 Top | “Object APIs,” on page 1 | APIs by category

Add User Index Entries (QUSADDUI) API

 Required Parameter Group:

 1 Returned library name Output Char(10)

2 Number of entries added Output Binary(4)

3 Qualified user index name Input Char(20)

4 Insert type Input Binary(4)

5 Index entries Input Char(*)

6 Length of index entries Input Binary(4)

7 Entry lengths and offsets Input Array(*) of Char(8)

8 Number of entries Input Binary(4)

Object APIs 47

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

9 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Add User Index Entries (QUSADDUI) API inserts one or more entries into the user index by the

insert type. Each entry is inserted into the index at the appropriate location based on the binary value of

the entry. No other collating sequence is supported. Every entry added causes the number of entries

added parameter to be incremented by 1; you can retrieve the current number of entries added by using

the Retrieve User Index Attributes (QUSRUIAT) API.

When you request to add multiple entries to a user index, the request may be partially successful in the

following situations:

v One or more of the entries you requested to add already exists in the index.

v The index becomes full as the entries are added.

v The user profile storage limit is exceeded as entries are added.

v One or more of the entry lengths or offsets are not valid.

When an error occurs, you should check the number of entries added parameter to see if all entries were

successfully added. If the number of entries added parameter and the number of entries parameter are

not equal, then all entries were not added.

Note:If you add new entries with an entry length longer than the user index is expecting, the entries are

truncated to the right. No error is given.

If you are using a fixed length index and the entries you are adding are less than the fixed length, you

may get undesirable results. The entries are not padded with blanks before being entered into the user

index. The API checks the length of index entries parameter to ensure that the length you pass is a

multiple of the length of one index entry.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*CHANGE

User Index Lock

*SHRUPD

Required Parameter Group

Returned library name

OUTPUT; CHAR(10)

 The name of the library that contains the user index to which the entries were added if they were

added successfully. This parameter is not set if no entries were successfully added. This

information helps you identify the specific library used when *LIBL or *CURLIB is specified in

the qualified user index name parameter.

Number of entries added

OUTPUT; BINARY(4)

 The number of entries successfully added to the specified user index. If an error is received while

processing the entries, this number indicates how many were added before the error occurred.

48 System i: Programming Object APIs

Qualified user index name

INPUT; CHAR(20)

 The user index to which you want to add entries and the library in which it is located. The first

10 characters contain the user index name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Insert type

INPUT; BINARY(4)

 The type of insert to be performed against all entries that are to be added.

Valid values are:

 1 Insert unique argument

This value is only valid for nonkeyed user indexes. If the entry is already in the index or the index entries are

keyed, an error is returned.

2 Insert with replacement

This value requests to replace the nonkey portion of the index entry if the key is already in the user index. It

is only valid for keyed user indexes. If the entry does not exist, it will be inserted into the user index. If the

index entries are nonkeyed, an error is returned.

3 Insert without replacement

This value requests to insert the entry only if the key is not already in the user index. It is only valid for a

keyed user index. If the entry does not exist, it will be inserted into the user index. If the entry is already in

the index or the index entries are nonkeyed, an error is returned.

Index entries

INPUT; CHAR(*)

 The actual entry or entries to be added to the user index. If the user index contains fixed length

entries, this parameter is processed using the entry length specified when the user index was

created. If the user index contains variable length entries, this parameter is processed using the

information contained in the entry lengths and entry offsets parameter.

When using an index that contains fixed length entries, this parameter should be the same length

as the length of index entries parameter.

Length of index entries

INPUT; BINARY(4)

 The length of the index entries parameter. This value must be greater than 0.

Entry lengths and entry offsets

INPUT; ARRAY(*) of CHAR(8)

 If the user index contains variable length entries, this parameter is a data-structure array that is

used to parse through the index entries parameter. In this case, an entry length and entry offset

need to be provided for all entries that are to be added. This parameter is ignored for user

indexes containing fixed length entries.

The size of the entry lengths and entry offsets parameter must be at least eight times the number

of entries parameter; otherwise, an error will be returned.

See “Format for Entry Lengths and Entry Offsets” on page 50 for details on the data structure.

Number of entries

INPUT; BINARY(4)

Object APIs 49

The number of entries that are to be added to the user index. Valid values are 1 through 4095.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Entry Lengths and Entry Offsets

The following table defines the format for the entry lengths and entry offsets parameter. This information

is needed to parse through the index entries parameter.For detailed descriptions of the fields in the table,

see “Field Descriptions.”

 Offset

Type Field Dec Hex

Note: The following fields will be repeated. The number of times they are repeated depends on the value specified

in the number of entries parameter.

 BINARY(4) Entry length

 BINARY(4) Entry offset

Field Descriptions

Entry length The length of the entry to be inserted into the index. Valid values are 1-2000. This value

depends on how the user index was created.

Entry offset. For the first entry, the offset is the number of bytes from the beginning of the index entries

parameter to the first byte of the first entry. For each subsequent entry, the offset is the number of bytes

from the beginning of the previous entry to the first byte of the next entry. Each entry offset value must

be greater than or equal to 0 and must refer to an entry within the index entries parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C7B E Length of index entries is not valid.

CPF3C7C E User index is full.

CPF3C71 E Insert type &1 is not valid.

CPF3C72 E Number of entries &1 is not valid.

CPF3C73 E Error occurred with index entries parameter.

CPF3C74 E Entry is already in the index.

CPF3C75 E Error occurred with entry lengths and offsets parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

50 System i: Programming Object APIs

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Create User Index (QUSCRTUI) API

 Required Parameter Group:

 1 Qualified user index name Input Char(20)

2 Extended attribute Input Char(10)

3 Entry length attribute Input Char(1)

4 Entry length Input Binary(4)

5 Key insertion Input Char(1)

6 Key length Input Binary(4)

7 Immediate update Input Char(1)

8 Optimization Input Char(1)

9 Public authority Input Char(10)

10 Text description Input Char(50)

 Optional Parameter Group 1:

 11 Replace Input Char(10)

12 Error code I/O Char(*)

 Optional Parameter Group 2:

 13 Domain Input Char(10)

 Optional Parameter Group 3:

 14 Usage tracking Input Char(1)

 Optional Parameter Group 4:

 15 Index size option Input Char(1)

 Default Public Authority: *USE
 Threadsafe: Yes

The Create User Index (QUSCRTUI) API creates a user index in either the user domain or the system

domain. A system-domain user index cannot be saved to a release prior to Version 2 Release 3

Modification 0. A user-domain user index can be directly manipulated with MI instructions and can also

be accessed using system APIs at all security levels. On a system with the QSECURITY system value set

to 40 or greater, you must use system APIs to access system-domain user indexes. If you create a

permanent object by using this API, you cannot delete the object by using the MI instruction DESINX

when the system security level is set to 40 or greater. You would have to delete the object by using the

Delete User Index (QUSDLTUI) API.

Note: If the user index is larger than 4 gigabytes, it cannot be saved to a release prior to Version 5

Release 2 Modification 0.

If the user index was created prior to Version 2 Release 2 Modification 0, the size of the user index is

limited to a maximum of 1 gigabyte. (A user index with a size greater than 1 gigabyte cannot be saved to

or restored from a release prior to Version 2 Release 2 Modification 0.) If the user index was created on or

after Version 2 Release 2 Modification 0, the size of the object is limited to a maximum of 4 gigabytes.

The size is dependent on the amount of storage needed for the number and size of index entries and

excludes the size of the associated space, if any.

Object APIs 51

#TOP_OF_PAGE
aplist.htm

Note: You can tell whether a user index object can be saved to a release prior to Version 2 Release 2

Modification 0:

v By ensuring that the current object size is less than 1 gigabyte by using one of the following:

– The Display Object Description (DSPOBJD) command

– The List Objects (QUSLOBJ) API

– The Retrieve Object Description (QUSROBJD) API
v By ensuring that the key length field is 120 bytes or less by using either of the following:

– The Materialize Index Attributes (MATINXAT) MI instruction

– The Retrieve User Index Attributes (QUSRUIAT) API

Note: For performance reasons, the *USRIDX object is created before checking to see if it exists in the

library specified for the qualified user index name. If you have an application using this API repeatedly,

even if you are using *NO for the replace parameter, permanent system addresses will be used.

Authorities and Locks

Library Authority

*READ and *ADD.

User Index Authority

*OBJMGT, *OBJEXIST, and *READ. These authorities are required only if the replace parameter is

used and there is an existing user index to replace.

User Index Lock

*EXCL. This applies to both the user index being created and an existing user index being

replaced.

Required Parameter Group

Qualified user index name

INPUT; CHAR(20)

 The name of the user index being created, and the library in which it is to be located. The first 10

characters contain the user index name, and the second 10 characters contain the library name.

You can use this special value for the library name:

 *CURLIB The job’s current library

User indexes created in the QTEMP and QRPLOBJ libraries are not forced to permanent storage;

they are deleted when those libraries are cleared at sign-off and system IPL, respectively.

Extended attribute

INPUT; CHAR(10)

 The extended attribute of the user index. For example, an object type of *FILE could have an

extended attribute of PF (physical file), LF (logical file), DSPF (display file), or SAVF (save file).

The extended attribute must be a valid *NAME. You can enter this parameter in uppercase,

lowercase, or mixed case. The API automatically converts it to uppercase.

Entry length attribute

INPUT; CHAR(1)

 Whether there are fixed-length or variable-length entries in the user index. The valid values are:

 F Fixed-length entries

V Variable-length entries

52 System i: Programming Object APIs

Entry length

INPUT; BINARY(4)

 The length of entries in the index.

The valid values for fixed-length entries are from 1 through 2000.

Valid values for variable length entries are 0 or -1. A value of 0 enables a maximum entry length

of 120 bytes and a key length from 1 through 120. A value of -1 enables a maximum entry length

of 2000 and a key length from 1 through 2000.

Note: A user index created with an entry length greater than 120 cannot be saved or restored to a

release prior to Version 2 Release 2 Modification 0.

Key insertion

INPUT; CHAR(1)

 Whether the inserts to the index are by key. The valid values are:

 0 No insertion by key

1 Insertion by key

Key length

INPUT; BINARY(4)

 The length of the key where the first byte of an entry is the beginning of the key for the index

entries. The value for this parameter must be 0 for no insertion by key. If you specify key length

insertion, this value is from 1 through 2000.

Immediate update

INPUT; CHAR(1)

 Whether the updates to the index are written synchronously to auxiliary storage on each update

to the index. The valid values are:

 0 No immediate update

1 Immediate update

Each update to the index is written to auxiliary storage after every insert and remove operation.

Optimization

INPUT; CHAR(1)

 The type of access in which to optimize the index. The valid values are:

 0 Optimize for random references

1 Optimize for sequential references

Public authority

INPUT; CHAR(10)

 The authority you give to users who do not have specific private or group authority to the user

index. Once the user index has been created, its public authority stays the same when it is moved

to another library or restored from backup media.

If the replace parameter is used and an existing user index is replaced, this parameter is ignored.

All authorities are transferred from the replaced user index to the new one.

The valid values for this parameter are:

 *ALL The user can perform all authorized operations on the user index.

Object APIs 53

Authorization list name The user index is secured by the specified authorization list, and its public authority is

set to *AUTL. The specified authorization list must exist on the system when this API

is issued. If the list does not exist, the create process fails, and an error message is

returned to the application.

*CHANGE The user has read, add, update, and delete authority for the user index and can read

the object description.

*EXCLUDE The user cannot access the user index in any way.

*LIBCRTAUT The public authority for the user index is taken from the CRTAUT value for the target

library when the object is created. If the CRTAUT value for the library changes later,

that change does not affect user indexes already created. If the CRTAUT value contains

an authorization list name and that authorization list secures an object, do not delete

the list. If you do, the next time you call this API with the *LIBCRTAUT parameter, it

will fail.

*USE The user can read the object description and contents but cannot change the user

index.

Text description

INPUT; CHAR(50)

 A brief description of the user index.

Optional Parameter Group 1

Replace

INPUT; CHAR(10)

 Whether you want to replace an existing user index. Valid values for this parameter are:

 *NO Do not replace an existing user index of the same name and library. *NO is the default value.

*YES Replace an existing user index of the same name and library.

If the user index already exists, you can replace it with a new user index of the same name and

library. The new user index is subject to the same authorities. The user index being replaced is

destroyed if both:

v The allow user domain (QALWUSRDMN) system value is not set to *ALL or does not contain

the QRPLOBJ library.

v The user index you are replacing is in the user domain.

If the user index is in the system domain, it is moved to the QRPLOBJ library. If QALWUSRDMN

is set to *ALL or if it contains QRPLOBJ, the replaced user index is moved to QRPLOBJ, which is

cleared at system IPL. For details about authorities, ownership, and renaming, see the discussion

of the REPLACE parameter in the Control language topic collection.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Domain

INPUT; CHAR(10)

 The domain into which the user index should be created. If this parameter is not specified, the

value of *DEFAULT will be assumed by the API. Valid values for this parameter are:

 *DEFAULT Allows the system to decide into which domain the object should be created.

54 System i: Programming Object APIs

*SYSTEM Creates the user index object into the system domain. The API can always create a user index into

the system domain, regardless of the security level running. However, if you are running at

security level 40 or greater, you must use APIs to access system-domain user index objects.

*USER Attempts to create the user index object into the user domain. This is not always possible. If the

library you are creating the user index into does not appear in the QALWUSRDMN system value,

the API cannot create the user index into the user domain. An error message will be returned.

The API uses the following criteria to determine into which domain to create the user index. The

destination library is the library you specified in the qualified user index name parameter. The

optional domain parameter is the information specified in the domain parameter.

 QALWUSRDMN System

Value Destination Library

Optional Domain

Parameter Domain of Created Object

*ALL Any *DEFAULT User domain

*ALL Any *SYSTEM System domain

*ALL Any *USER User domain

QTEMP QTEMP *DEFAULT User domain

QTEMP QTEMP *SYSTEM System domain

QTEMP QTEMP *USER User domain

Does not contain library

name

Library name *DEFAULT System domain

Does not contain library

name

Library name *SYSTEM System domain

Does not contain library

name

Library name *USER None; error is returned

Note: The QALWUSRDMN system value lists the libraries into which the user domain objects can be created. Valid

libraries are the special value *ALL or a list of one or more library names.

If your system is at security level 40 or greater, you must use APIs to access system-domain user

indexes using APIs. You cannot use MI instructions to directly access system-domain user

indexes.

You can use the Retrieve Object Description (QUSROBJD) API or the List Object (QUSLOBJ) API

to determine into which domain the user index object was created.

Optional Parameter Group 3

Usage tracking

INPUT; CHAR(1)

 The usage tracking state. Usage tracking provides machine checkpoints to improve availability of

user indexes. If a user index is found to be a state of partial change, it will be marked as

damaged. The valid values are:

 0 Do not track usage state. 0 is the default value.

1 Track usage state.

Optional Parameter Group 4

Index size option

INPUT; CHAR(1)

Object APIs 55

The maximum size of the user index. The valid values are:

 0 The maximum size of the user index is 4 gigabytes.

1 The maximum size of the user index is 1 terabyte.

Dependencies between Parameters

Some of the parameters are interdependent and are shown in the following table:

 Entry Length Attribute Entry Length (n) Key Insertion Key Length (x)

Fixed 1 <= n <= 2000 No 0

Fixed 1 <= n <= 2000 Yes 1 <= x <= n

Note: For the following entry lengths:

v 0 signifies a maximum entry length of 120.

v -1 signifies a maximum entry length of 2000.

Variable 0, -1 No 0

Variable 0 Yes 1 <= x <= 120

Variable -1 Yes 1 <= x <= 2000

Error Messages

 Message ID Error Message Text

CPF2143 E Cannot allocate object &1 in &2 type *&3.

CPF2144 E Not authorized to &1 in &2 type *&3.

CPF2283 E Authorization list &1 does not exist.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C0A E Value &1 for entry length parameter is not valid.

CPF3C0B E Value &1 for immediate update parameter is not valid.

CPF3C0C E Value &1 for key length parameter is not valid.

CPF3C0D E Value &1 for key insertion parameter is not valid.

CPF3C0E E Value &1 for the optimization parameter is not valid.

CPF3C03 E User index &2 not created.

CPD3C01 D Object name &1 is not valid.

CPD3C02 D Value &1 for entry length attribute parameter is not valid.

CPD3C03 D Extended attribute &1 is not valid.

CPD3C05 D Value &1 for authority parameter is not valid.

CPD3C0A D Value &1 for entry length parameter is not valid.

CPD3C0B D Value &1 for immediate update parameter is not valid.

CPD3C0C D Value &1 for key length parameter is not valid.

CPD3C0D D Value &1 for key insertion parameter is not valid.

CPD3C0E D Value &1 for the optimization parameter is not valid.

CPF3C2A E Value &1 for entry length attribute parameter is not valid.

CPF3C2B E Extended attribute &1 is not valid.

CPF3C2D E Value &1 for authority parameter is not valid.

CPF3C29 E Object name &1 is not valid.

CPF3C34 E Value &1 for replace option is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C45 E Value &1 not valid for domain parameter.

CPF3C49 E Request for user domain object cannot be granted.

CPF3C90 E Literal value cannot be changed.

56 System i: Programming Object APIs

Message ID Error Message Text

CPF3C93 E Value &1 not valid for usage tracking parameter.

CPF3C95 E Value &1 not valid for index size option parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9870 E Object &2 type *&5 already exists in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Delete User Index (QUSDLTUI) API

 Required Parameter Group:

 1 Qualified user index name Input Char(20)

2 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Delete User Index (QUSDLTUI) API deletes user indexes created with the Create User Index

(QUSCRTUI) API.

The QUSDLTUI API performs the same function as the Delete User Index (DLTUSRIDX) command.

Authorities and Locks

Library Authority

*EXECUTE

User Index Authority

*OBJEXIST

User Index Lock

*EXCL

Required Parameter Group

Qualified user index name

INPUT; CHAR(20)

 The name of the user index and the name of the library in which it resides. The first 10 characters

contain the user index name, and the second 10 characters contain the library name. The user

index name can be either a specific name or a generic name, a string of one or more characters

followed by an asterisk (*). If you specify a generic name, QUSDLTUI deletes all user indexes that

have names beginning with the string for which the user has authority.

You can use these special values for the library name:

 *ALL All libraries

*ALLUSR All user-defined libraries, plus libraries containing user data and having names starting with Q.

For information on the libraries included, see *ALLUSR in Generic library names.

*CURLIB The job’s current library

Object APIs 57

#TOP_OF_PAGE
aplist.htm

*LIBL The library list

*USRLIBL The user portion of the job’s library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF2105 E Object &1 in &2 type *&3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted.

CPF2125 E No objects deleted.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Object APIs,” on page 1 | APIs by category

Remove User Index Entries (QUSRMVUI) API

 Required Parameter Group:

 1 Number of entries removed Output Binary(4)

2 Entries removed Output Char(*)

3 Length of entries removed Input Binary(4)

4 Entry lengths and entry offsets Output Array(*) of Char(8)

5 Length of entry lengths and offsets Input Binary(4)

6 Returned library name Output Char(10)

7 Qualified user index name Input Char(20)

8 Format Input Char(8)

9 Maximum number of entries Input Binary(4)

10 Remove type Input Binary(4)

11 Remove criteria Input Char(*)

12 Length of remove criteria Input Binary(4)

13 Remove criteria offset Input Binary(4)

14 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Remove User Index Entries (QUSRMVUI) API removes one or more user index entries that match

the values specified on the remove criteria parameter. It returns the number of entries that were removed

and, optionally, returns the actual index entries removed.

58 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*CHANGE

User Index Lock

*SHRUPD

Required Parameter Group

Number of entries removed

OUTPUT; BINARY(4)

 The number of index entries, satisfying the values specified on the remove criteria parameter, that

were successfully removed from the user index. If this field is 0, no entries satisfied the remove

criteria. This value can never be greater than the maximum number of entries parameter.

Entries removed

OUTPUT; CHAR(*)

 The actual entries removed. All entries that satisfied the remove criteria parameter and were

removed (up to the maximum number of entries parameter) are returned if sufficient space is

provided. The API returns only the data that the area can hold.

The size of the entries removed parameter should be greater than or equal to:

 8 + (the maximum number of entries parameter

 * the maximum entry length)

The maximum entry length was defined when the index was created. It can be obtained by using

the Retrieve User Index Attributes (QUSRUIAT) API.

To determine if all the entries are valid in the entries removed parameter, compare the bytes

returned and the bytes available fields in the entries removed parameter.

The entries are always returned starting with the entry that is closest to or equal to the remove

argument. Then entries are kept in the order that they proceed away from the remove criteria

parameter. Each entry removed from the user index is based on the binary value of the remove

criteria. No other collating sequence is supported. User indexes can contain only scalar data,

which makes the index entries contiguous. Use the entry lengths and entry offsets parameter to

parse the entries that were removed and returned in this parameter.

If you do not want the entries that were removed to be returned in this parameter, specify 0 for

the length of entries removed parameter.

Every entry removed causes the number of entries removed parameter to be incremented by 1.

You can also use the Retrieve User Index Attributes (QUSRUIAT) API to retrieve this information.

Refer to “IDXE0100 Format” on page 62 for the layout of this parameter.

Length of entries removed

INPUT; BINARY(4)

 The length of the entries removed parameter. If this length is larger than the actual size of the

entries removed parameter, the results may not be predictable. The minimum length is 0 or >=

(greater than or equal to) 8 bytes. If 0 is used, the entries removed from the index are not

returned and the bytes returned and the bytes available in the entries removed parameter are not

set.

Entry lengths and entry offsets

OUTPUT; ARRAY of CHAR(8)

Object APIs 59

A data structure that contains entry lengths and entry offsets for all entries that were found that

met the remove criteria parameter. An entry length and entry offset exist for every entry returned

in the entries removed parameter. These entry lengths and entry offsets are used to parse through

the entries removed parameter. If the length of entries removed parameter is 0, this information

will not be returned.

The size of the entry lengths and entry offsets parameter should be at least:

 8 + (the maximum number of entries parameter * 8)

You must provide enough space in both the entries removed and the entry lengths and offset

parameter for this API to return complete information to you.

You will not receive complete information in the following two situations.

v You provide enough space in the entries removed parameter for the API to return all index

entries removed, but there is not enough space in the entry lengths and entry offset parameter

to return the lengths and offsets for all entries. You will be unable to parse through all of the

entries in the entries removed parameter. Check the bytes returned and bytes available fields in

the entry lengths and entry offsets parameter to ensure the information is complete.

v You provide enough space in the entry lengths and entry offsets parameter to return all lengths

and offsets, but there is not enough space in the entries removed parameter to return all index

entries removed. Some of the entry lengths and entry offsets will not be valid; they will refer to

index entries that could not be returned to you. Check the bytes returned and bytes available

fields in the entries removed parameter to ensure that the information is complete.

See “Format for Entry Lengths and Entry Offsets” on page 62 for details on the data structure.

Length of entry lengths and entry offsets

INPUT; BINARY(4)

 The length of the entry lengths and entry offsets. If the length is longer than the entry lengths

and entry offsets parameter, the results may not be predictable. The minimum length is 8. If the

length of entries removed parameter is 0, which means you do not want the entries removed to

be returned, this parameter is ignored.

Returned library name

OUTPUT; CHAR(10)

 The name of the library that contains the user index from which the entries were removed. If the

entries are successfully removed from the user index, the name of the library that contained the

user index entries is returned. This parameter is not set if an error occurs.

Qualified user index name

INPUT; CHAR(20)

 The user index from which you want to remove entries, and the library in which it is located.

The first 10 characters contain the user index name, and the second 10 characters contain the

library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format

INPUT; CHAR(8)

 The format of the user index entries that were removed.

The format name supported is:

 IDXE0100 Basic Information

60 System i: Programming Object APIs

Refer to “IDXE0100 Format” on page 62 for details on the format.

Maximum number of entries

INPUT; BINARY(4)

 The maximum number of user index entries to be removed that satisfy the remove criteria. Valid

values are 1 through 4095.

Remove type

INPUT; BINARY(4)

 The type of remove operation that is to be performed.

Valid values are:

 1 Equal

Remove entries that are equal to the remove criteria.

2 Greater than

Remove entries that are greater than the remove criteria.

3 Less than

Remove entries that are less than the remove criteria.

4 Greater than or equal

Remove entries that are greater than or equal to the remove criteria.

5 Less than or equal

Remove entries that are less than or equal to the remove criteria.

6 First

Remove the first index entry or entries.

7 Last

Remove the last index entry or entries.

8 Between

Remove all entries between the two arguments specified in the remove criteria.

Remove criteria

INPUT; CHAR(*)

 The criteria used to find matches in the user index.

When the remove type is 8 (between), this parameter contains two criteria elements of the same

length. The first element is considered the starting element, and the second element is the ending

element. This parameter is ignored when the remove type is 6 (first) or 7 (last).

Length of remove criteria

INPUT; BINARY(4)

 The length of the remove criteria being used. This parameter is ignored when the remove type is

6 (first) or 7 (last). If the remove type is 8 (between), this parameter specifies the length of the

first element. The second element must have the same length as the first element. Valid values are

1-2000, depending on how the user index was created.

For a fixed and keyed user index, the length of the remove criteria can be greater than the length

of the key.

Remove criteria offset

INPUT; BINARY(4)

 The offset of the second element from the beginning of the remove criteria parameter. This

parameter is ignored unless the remove type is 8 (between).

Object APIs 61

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Entry Lengths and Entry Offsets

The following information is returned in the entry lengths and entry offsets parameter. This information

is needed to parse through the entries removed parameter. For detailed descriptions of the fields in the

table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

Note: The following fields will be repeated. The number of times they are repeated depends on the length of the

entry lengths and entry offsets parameter and the number of entries actually removed.

 BINARY(4) Entry length

 BINARY(4) Entry offset

IDXE0100 Format

The following information is returned for the IDXE0100 format. For detailed descriptions of the fields in

the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(*) Entry 1-n

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned.

Entry length. The length of the entry removed from the user index. Valid values are 1-2000, depending

on how the user index was created.

Entry offset. The number of bytes from the beginning of the immediately preceding entry to the first byte

of the entry returned. For the first entry, the offset is the number of bytes from the beginning of the

parameter to the first byte of the first entry.

Entry 1-n. All entries that satisfy the remove criteria (up through the maximum number of entries) are

returned. User indexes contain only scalar data, which makes the index entries contiguous. Use the entry

length and entry offset values to parse this parameter.

62 System i: Programming Object APIs

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C7D E Remove or search information is not valid.

CPF3C70 E Length of entries removed parameter is not valid.

CPF3C76 E Length of lengths and offsets of entries &1 is not valid.

CPF3C77 E Remove type &1 is not valid.

CPF3C78 E Criteria length &1 is not valid.

CPF3C79 E Maximum number of entries &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve User Index Attributes (QUSRUIAT) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Qualified user index name Input Char(20)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve User Index Attributes (QUSRUIAT) API retrieves information about the current attributes

and the current operational statistics of the user index.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*USE

User Index Lock

*SHRUPD

Object APIs 63

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the index information returned.

The format name supported is:

 IDXA0100 Basic information

Refer to “IDXA0100 Format” for details on the format.

Qualified user index name

INPUT; CHAR(20)

 The user index for which you want to retrieve information, and the library in which it is located.

The first 10 characters contain the user index name, and the second 10 characters contain the

library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

IDXA0100 Format

The following information is returned for the IDXA0100 format. For detailed descriptions of the fields in

the table, see “Field Descriptions” on page 65.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User index name

18 12 CHAR(10) User index library name

28 1C CHAR(1) Entry length attribute

29 1D CHAR(1) Immediate update

30 1E CHAR(1) Key insertion

64 System i: Programming Object APIs

Offset

Type Field Dec Hex

31 1F CHAR(1) Optimized processing mode

32 20 CHAR(4) Reserved

36 24 BINARY(4) Entry length

40 28 BINARY(4) Maximum entry length

44 2C BINARY(4) Key length

48 30 BINARY(4) Number of entries added

52 34 BINARY(4) Number of entries removed

56 38 BINARY(4) Number of retrieve operations

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned.

Entry length. For user indexes with fixed-length entries, this is the length of each index entry. For user

indexes with variable-length entries, this is equal to the longest entry that has ever been inserted into the

index. Valid values are from 1 through 2000.

Entry length attribute. The types of entries in the user index.

Possible values are:

 F Fixed-length entries

V Variable-length entries

Immediate update. Whether or not the updates to the index are written synchronously to auxiliary

storage on each update to the index.

The possible values are:

 0 No immediate update

1 Immediate update

Key insertion. Whether or not the inserts to the index are by key.

 0 No insertion by key

1 Insertion by key

Key length. The length of the key where the first byte of an entry is the beginning of the key for the

index entries. This field will be 0 for a nonkeyed user index.

Maximum entry length. The maximum entry length any user index entry can have.

Number of entries added. The number of entries added to the user index. The number of entries

currently in the index can be obtained by subtracting the number of entries removed from the number of

entries added.

Object APIs 65

Number of entries removed. The number of entries removed from the user index.

Number of retrieve operations. The number of times either the FNDINXEN (find independent index

entry) MI instruction or Retrieve User Index Entry (QUSRTVUI) API has been used on this user index.

The QUSRUIAT API or MATINXAT (materialize independent index attributes) MI instruction sets the

number of retrieve operations to 0 after the retrieve or materialize operation is completed.

Optimized processing mode. Whether the user index is maintained in a manner that optimizes

performance for:

 0 Random references

1 Sequential references

Reserved. An ignored field.

User index library name. The name of the library containing the user index. This information is helpful

when *CURLIB or *LIBL is specified in the qualified user index name parameter.

User index name. The name of the user index.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve User Index Entries (QUSRTVUI) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Entry lengths and entry offsets Output Array(*) of Char(8)

4 Length of entry lengths and offsets Input Binary(4)

5 Number of entries returned Output Binary(4)

6 Returned library name Output Char(10)

7 Qualified user index name Input Char(20)

66 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

8 Format Input Char(8)

9 Maximum number of entries Input Binary(4)

10 Search type Input Binary(4)

11 Search criteria Input Char(*)

12 Length of search criteria Input Binary(4)

13 Search criteria offset Input Binary(4)

14 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve User Index Entries (QUSRTVUI) API retrieves user index entries that match the criteria

specified on the search criteria parameter.

The entries are always returned starting with the entry that is closest to or equal to the search criteria

parameter and then proceeding away from the search criteria. The number of entries returned parameter

will never exceed the value specified in the maximum number of entries parameter. Each entry retrieved

from the user index is based on the binary value of the search criteria parameter. No other collating

sequence is supported.

Every entry retrieved causes the number of retrieve operations to be incremented by 1.

Authorities and Locks

User Index Library Authority

*EXECUTE

User Index Authority

*USE

User Index Lock

*SHRUPD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested as long as you specify the length parameter correctly. As a

result, the API returns only the data that the area can hold.

Use the entry lengths and entry offsets parameter to parse through this parameter. If the number

of entries returned parameter is 0, then only the bytes available and the bytes provided have

been changed.

To determine if all the entries are valid in the receiver variable, compare the bytes returned and

bytes available fields. If the bytes returned are less than the bytes available, your receiver variable

is not large enough to hold all the entries that match the search criteria parameter. While

processing the entries, you need to make sure that both:

v Your current offset in the receiver variable plus the entry offset is less than the length of the

receiver variable

v Your current offset in the receiver variable plus the entry offset plus the entry length is less

than the length of the receiver variable.

The size of the receiver variable parameter should be greater than or equal to:

 8 + (the maximum number of entries parameter

 * the maximum entry length)

Object APIs 67

The maximum entry length was defined when the index was created. It can be obtained by using

the Retrieve User Index Attributes (QUSRUIAT) API.

Refer to the “IDXE0100 Format” on page 70 for the layout of this parameter.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Entry lengths and entry offsets

OUTPUT; ARRAY(*) of CHAR(8)

 A data structure containing entry lengths and entry offsets for all entries found that met the

search criteria. An entry length and entry offset exist for every entry returned in the receiver

variable. These entry lengths and entry offsets are used to parse through the receiver variable.

The size of the entry lengths and entry offsets parameter should be at least:

 8 + (the maximum number of entries parameter * 8)

You must provide enough space in both the receiver variable and the entry lengths and entry

offsets parameter for this API to return this information to you. You will not receive complete

information in the following two situations.

v You provide enough space in the receiver variable parameter for the API to return all index

entries, but there is not enough space in the entry lengths and entry offset parameter to return

the lengths and offsets for all entries. You will be unable to parse through all of the entries in

the receiver variable parameter. Check the bytes returned and bytes available fields in the entry

lengths and entry offsets parameter to ensure that the information is complete.

v You provide enough space in the entry lengths and entry offsets parameter to return all lengths

and offsets, but there is not enough space in the receiver variable parameter to return all index

entries retrieved. Some of the entry lengths and entry offsets will not be valid; they will refer

to index entries that could not be returned to you. Check the bytes returned and bytes

available fields in the receiver variable parameter to ensure that the information is complete.

See the “Format for Entry Lengths and Entry Offsets” on page 70 for details about the data

structure.

Length of entry lengths and entry offsets

INPUT; BINARY(4)

 The length of the entry lengths and entry offsets parameter. If the length is longer than the entry

lengths and entry offsets parameter, the results may not be predictable. The minimum length is 8.

If the receiver variable cannot hold all the entries that satisfy the search criteria:

v The entries are truncated.

v Not all the information in the entry lengths and entry offsets parameter is valid.

Number of entries returned

OUTPUT; BINARY(4)

 The total number of index entries found that satisfy the search criteria. If this field is 0, no entries

satisfied the search criteria. This value can never be greater than the maximum number of entries

parameter.

Returned library name

OUTPUT; CHAR(10)

 The name of the library that contains the user index from which the entries were successfully

retrieved. This parameter is not set if an error occurs.

Qualified user index name

INPUT; CHAR(20)

68 System i: Programming Object APIs

The user index for which you want to retrieve information, and the library in which it is located.

The first 10 characters contain the user index name, and the second 10 characters contain the

library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format

INPUT; CHAR(8)

 The format of the receiver variable.

The format name supported is:

 IDXE0100 Basic Information

Refer to “IDXE0100 Format” on page 70 for details about the format.

Maximum number of entries

INPUT; BINARY(4)

 The maximum number of index entries to be returned that match the search criteria. Valid values

are 1 through 4095.

Search type

INPUT; BINARY(4)

 The type of search that is to be performed.

Valid values are:

 1 Equal

Find entries that are equal to the searcg criteria.

2 Greater than

Find entries that are greater than the search criteria.

3 Less than

Find entries that are less than the search criteria.

4 Greater than or equal

Find entries that are greater than or equal to the search criteria.

5 Less than or equal

Find entries that are less than or equal to the search criteria.

6 First

Find the first index entry or entries.

7 Last

Find the last index entry or entries.

8 Between

Find all entries between the two arguments specified in the search criteria.

Search criteria

INPUT; CHAR(*)

 The criteria used to find matches in the user index.

Object APIs 69

If the search type is 8 (between), both search elements must have the same length. When the

search type is 8 (between), this parameter contains two search elements. The first element is

considered the starting element, and the second element is the ending element.

This parameter is ignored when the search type parameter is 6 (first) or 7 (last).

Length of search criteria

INPUT; BINARY(4)

 The length of the search criteria that is to be used. This parameter is ignored when the search

type is 6 (first) or 7 (last).

If the search type is 8 (between), this parameter specifies the length of the first element. The

second element must have the same length as the first element. Valid values are 1-2000,

depending on how the user index was created.

For a fixed and keyed user index, the length of the search criteria:

v Can be greater than the length of the key

v Must be less than or equal to the entry length

Search criteria offset

INPUT; BINARY(4)

 The offset of the second search element from the beginning of the search criteria parameter. This

parameter is ignored unless the search type is 8 (between).

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Entry Lengths and Entry Offsets

The following information is returned in the entry lengths and entry offsets parameter. The information is

needed to parse through the receiver variable. For detailed descriptions of the fields in the table, see

“Field Descriptions” on page 71.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

Note: The following fields will be repeated. The number of times they are repeated depends on the length of the

entry lengths and entry offsets parameter and the number of entries actually retrieved.

 BINARY(4) Entry length

 BINARY(4) Entry offset

IDXE0100 Format

The following index information is returned for the IDXE0100 format in the receiver variable parameter.

For detailed descriptions of the fields in the table, see “Field Descriptions” on page 71.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

70 System i: Programming Object APIs

Offset

Type Field Dec Hex

8 8 CHAR(*) Entry 1-n

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned.

Entry length. The length of the entry retrieved from the index. Valid values are 1-2000, depending on

how the user index was created.

Entry offset. The number of bytes from the beginning of the immediately preceding entry to the first byte

of the entry returned. For the first entry, the offset is the number of bytes from the beginning of the

receiver variable to the first byte of the first entry.

Entry 1-n. All entries that satisfy the search criteria (up to the maximum number of entries parameter)

are returned. User indexes are created to contain only scalar data, which results in the index entries being

contiguous. Use the entry length and entry offset values to parse this field.

This field is repeated by the value in the number of entries returned parameter if the receiver variable is

large enough to hold all of the entries found.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C7A E Search type &1 is not valid.

CPF3C7D E Remove or search information is not valid.

CPF3C76 E Length of lengths and offsets of entries &1 is not valid.

CPF3C78 E Criteria length &1 is not valid.

CPF3C79 E Maximum number of entries &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Object APIs 71

Top | “Object APIs,” on page 1 | APIs by category

User Space APIs

The user space APIs allow you to create and delete user spaces, change and retrieve the contents of user

spaces, and change and retrieve information about user spaces.

For additional information, see “Using User Space APIs” on page 190.

The user space APIs are:

v “Change User Space (QUSCHGUS) API” (QUSCHGUS) changes the contents of a user space.

v “Change User Space Attributes (QUSCUSAT) API” on page 74 (QUSCUSAT) changes the attributes of a

user space object.

v “Create User Space (QUSCRTUS) API” on page 77 (QUSCRTUS) creates a user space.

v “Delete User Space (QUSDLTUS) API” on page 81 (QUSDLTUS) deletes user spaces created with the

QUSCRTUS API.

v “Retrieve Pointer to User Space (QUSPTRUS) API” on page 83 (QUSPTRUS) retrieves a pointer to the

beginning of a user space for a high-level language (HLL) that supports pointers. HLLs that support

pointers can use this pointer to manipulate the contents of a user space directly.

v “Retrieve User Space (QUSRTVUS) API” on page 84 (QUSRTVUS) retrieves the contents of a user

space. It does not retrieve descriptive information about the user space, such as its size.

v “Retrieve User Space Attributes (QUSRUSAT) API” on page 86 (QUSRUSAT) retrieves information

about creation attributes and current operational statistics of the user space, such as its size.

 “Object APIs,” on page 1 | APIs by category

Change User Space (QUSCHGUS) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Starting position Input Binary(4)

3 Length of data Input Binary(4)

4 Input data Input Char(*)

5 Force changes to auxiliary storage Input Char(1)

 Optional Parameter:

 6 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Change User Space (QUSCHGUS) API changes the contents of the user space (*USRSPC) object by

moving a specified amount of data to the object. This API allows you to change the contents of a user

space if you are using either:

v A language that does not support pointers

v System-domain user spaces

Note: To determine the starting position for the QUSCHGUS API, you must add 1 to the offset value. In

contrast to the i5/OS
®

list APIs, which use an offset value based on 0 for the starting position, the

QUSCHGUS API uses a value based on 1. For the QUSCHGUS API, the first character in the user space

is at position 1.

72 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The first 10 characters contain the user space name, and the second 10 characters contain the

name of the library where the user space is located. The special values supported for the library

name are *LIBL and *CURLIB.

Starting position

INPUT; BINARY(4)

 The first byte of the user space that is to be changed. It must have a value greater than 0.

Length of data

INPUT; BINARY(4)

 The length of the new data in the input data parameter. The length must be greater than 0.

Input data

INPUT; CHAR(*)

 The new data to be placed into the user space. The field must be at least as long as the length of

data parameter.

Force changes to auxiliary storage

INPUT; CHAR(1)

 The method of forcing changes made to the user space to auxiliary storage.

The valid values are as follows:

 0 Does not force changes. Normal system management writes the changes to auxiliary storage.

1 Forces changes asynchronously. This interrupts the normal system management and ensures that the user

space is written to auxiliary storage.

2 Forces changes synchronously. This interrupts the normal system management and ensures that the user space

is written immediately to auxiliary storage.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

Object APIs 73

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3C0F E Value &1 for starting position parameter is not valid.

CPF3C04 E User space &1 not changed.

CPD3C0F D Value &1 for starting position parameter is not valid.

CPD3C12 D Length of data is not valid.

CPD3C13 D Value &1 for force option is not valid.

CPD3C14 D Starting position &1 and length &2 cause space overflow.

CPD3C15 D New value &1 is shorter than the length specified.

CPD3C17 D Error occurred with input data parameter.

CPF3C12 E Length of data is not valid.

CPF3C13 E Value &1 for force option is not valid.

CPF3C14 E Starting position &1 and length &2 cause space overflow.

CPF3C15 E New value &1 is shorter than the length specified.

CPF3C17 E Error occurred with input data parameter.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Change User Space Attributes (QUSCUSAT) API

 Required Parameter Group:

 1 Returned library name Output Char(10)

2 Qualified user space name Input Char(20)

3 Attributes to change Input Char(*)

4 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Change User Space Attributes (QUSCUSAT) API changes the attributes of a user space object. This

API can be used to:

v Extend or truncate a user space

v Mark or unmark the user space as automatically extendible by the system

v Change the initial value to which future extensions of the user space will be set

v Change the number of pages transferred between main storage and auxiliary storage

Authorities and Locks

Library Authority

*EXECUTE

74 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

User Space Authority

*CHANGE, *OBJMGT

User Space Lock

*EXCL

Required Parameter Group

Returned library name

OUTPUT; CHAR(10)

 The name of the library that contains the changed user space object. If the space attributes are

successfully changed, the name of the library in which the user space was found is returned.

Qualified user space name

INPUT; CHAR(20)

 The first 10 characters contain the user space name, and the second 10 characters contain the

name of the library where the user space is located. The special values supported for the library

name are *LIBL and *CURLIB.

Attributes to change

INPUT; CHAR(*)

 The attributes of the user space object that you want to change.

The information must be in the following format:

 Number of

variable length

records

BINARY(4)

The total number of all of the variable length records.

Variable length

records

The attributes of the user space to change and the data used for the change. For the specific

format of the variable length record, refer to “Format for Variable Length Records.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Variable Length Records

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of data

8 8 CHAR(*) Data

If you specify a length of data that is longer than the key field’s defined data length, the data will be

truncated at the right. No error message will be returned.

If you specify a length of data that is shorter than the key field’s defined data length, an error message

will be returned.

You may specify a key more than once. If duplicate keys are specified, the last specified value for that

key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Object APIs 75

Field Descriptions

Data. The value to which a specific user space attribute is to be changed. All values are validity checked.

Key. The user space attribute to be changed. Only specific attributes can be changed. Refer to “Keys” for

more information.

Length of data. The length of the new user space attribute value. The length of data field is used to get

addressability to the next attribute record.

Keys

The following table lists the keys that can be used in the attribute record.

 Key Type Attribute

1 BINARY(4) Space size

2 CHAR(1) Initial value

3 CHAR(1) Automatic extendibility

4 BINARY(4) Transfer size request

Field Descriptions

Automatic extendibility. Whether or not the user space is automatically extended by the system when

the end of the space is encountered.

 0 The user space is not automatically extendible.

1 The user space is automatically extendible.

Initial value. The initial value to which future extensions of the user space will be set. You will achieve

the best performance if you set this byte to hexadecimal zeros (X’00’).

Space size. The size in bytes of the user space object. If this value is smaller than the current size of the

space, the user space is truncated. If it is larger, the space is extended.

Transfer size request. The number of pages to be transferred between main storage and auxiliary storage.

This is only a request, as the machine may use a value of its choice in some circumstances. Allowable

values range between 0 and 32 pages. A value of 0 is an indication that the machine should use the

default transfer size for the user space. A larger transfer size may allow for better performance of

applications processing the user space.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C4B E Value not valid for field &1.

CPF3C4C E Value not valid for field &1.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

76 System i: Programming Object APIs

Message ID Error Message Text

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Create User Space (QUSCRTUS) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Extended attribute Input Char(10)

3 Initial size Input Binary(4)

4 Initial value Input Char(1)

5 Public authority Input Char(10)

6 Text description Input Char(50)

 Optional Parameter Group 1:

 7 Replace Input Char(10)

8 Error code I/O Char(*)

 Optional Parameter Group 2:

 9 Domain Input Char(10)

 Optional Parameter Group 3:

 10 Transfer size request Input Binary(4)

11 Optimum space alignment Input Char(1)

 Default Public Authority: *USE
 Threadsafe: Yes

The Create User Space (QUSCRTUS) API creates a user space in either the user domain or the system

domain. A system-domain user space cannot be saved to a release prior to Version 2 Release 3

Modification 0. A user-domain user space can be directly manipulated with machine interface (MI)

instructions or can be accessed using system APIs. On systems with a QSECURITY system value of 40 or

greater, applications can only access system-domain user spaces using APIs. The user space objects you

create are larger than or equal to the size specified. They have a fixed length and can be extended or

truncated using the Change User Space Attributes (QUSCUSAT) API or the Modify Space (MODS) MI

instruction (for user-domain user spaces). (The MODS instruction will not work on system-domain user

spaces if the security level of the system is 40 or greater.)

Note: For performance reasons, the *USRSPC object is created before checking to see if it exists in the

library specified for the qualified user space name. If you have an application using this API repeatedly,

even if you are using *NO for the replace parameter, permanent system addresses will be used.

Object APIs 77

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

User Space Authority

*OBJMGT, *OBJEXIST, and *READ. These authorities are required only if the replace parameter is

used and if there is an existing user space to replace.

User Space Library Authority

*READ and *ADD.

User Space Lock

*EXCL. This applies to both the user space being created and an existing user space being

replaced.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The first 10 characters contain the user space name, and the second 10 characters contain the

name of the library where the user space is located. The only special value supported for the

library name is *CURLIB.

User spaces created in the QTEMP and QRPLOBJ libraries are not forced to permanent storage;

they are deleted when those libraries are cleared at sign-off and system IPL, respectively.

Extended attribute

INPUT; CHAR(10)

 The extended attribute of the user space. For example, an object type of *FILE has an extended

attribute of PF (physical file), LF (logical file), DSPF (display file), SAVF (save file), and so on. A

*USRSPC might have user defined extended attributes such as LOG, TRACE, and CONTROL.

The extended attribute must be a valid *NAME. You can enter this parameter in uppercase,

lowercase, or mixed case. The API converts it to uppercase.

Initial size

INPUT; BINARY(4)

 The initial size of the user space being created. This value must be from 1 byte to 16, 776, 704

bytes.

Initial value

INPUT; CHAR(1)

 The initial value of all bytes in the user space. You will achieve the best performance if you set

this byte to X’00’.

Public authority

INPUT; CHAR(10)

 The authority you give users who do not have specific private or group authority to the user

space. Once the user space has been created, its public authority stays the same when it is moved

to another library or restored from backup media.

If the replace parameter is used and a user space exists to be replaced, this parameter is ignored.

All authorities are transferred from the replaced user space to the new one.

The valid values for this parameter are:

 *ALL The user can perform all authorized operations on the object.

Authorization list

name

The user space is secured by the specified authorization list, and its public authority is set to

*AUTL. The specified authorization list must exist on the system when this API is called. If it does

not exist, the create process fails, and an error is returned to the application.

78 System i: Programming Object APIs

*CHANGE The user can read the object description and has read, add, update, and delete authority to the

object.

*EXCLUDE The user cannot access the object in any way.

*LIBCRTAUT The public authority for the user space is taken from the CRTAUT value for the target library

when the object is created. If the CRTAUT value for the library changes later, that change does not

affect user spaces already created. If the CRTAUT value contains an authorization list name and

that authorization list secures an object, do not delete the list. If you do, the next time you call this

API with the *LIBCRTAUT parameter, it will fail.

*USE The user can read the object and its description but cannot change them.

Text description

INPUT; CHAR(50)

 This text briefly describes the user space.

Optional Parameter Group 1

Replace

INPUT; CHAR(10)

 Whether you want to replace an existing user space.

Valid values for this parameter are:

 *NO Do not replace an existing user space of the same name and library. *NO is the default value.

*YES Replace an existing user space of the same name and library.

 If the user space already exists, it is replaced by a new user space of the same name and library, and is

subject to the same authorities. The user space being replaced is destroyed if both:

v The allow user domain (QALWUSRDMN) system value is not set to *ALL or does not contain the

library QRPLOBJ.

v The user space you are replacing is in the user domain.

If the user space is in the system domain, it is moved to QRPLOBJ. If QALWUSRDMN is set to

*ALL or if it contains QRPLOBJ, the replaced user space is moved to QRPLOBJ, which is cleared

at system IPL. For details about authorities, ownership, and renaming, see the discussion of the

REPLACE parameter in the Control language topic collection.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Domain

INPUT; CHAR(10)

 The domain into which the user space is created. If this parameter is not specified, the value of

*DEFAULT is assumed by the API.

Valid values for this parameter are:

 *DEFAULT Allows the system to decide into which domain the object should be created.

*SYSTEM Creates the user space object into the system domain. The API can always create a user space into

the system domain regardless of the security level in effect. However, you must use APIs to access

system-domain user spaces if you are running at security level 40 or greater.

Object APIs 79

*USER Attempts to create the user space object into the user domain. This is not always possible. If the

library you are creating the user space into does not appear in the QALWUSRDMN system value,

the API cannot create the user space into the user domain. An error will be returned.

 The API uses the following values to determine into which domain to create the user space. The

destination library is the library you specified in the qualified user space name parameter. The optional

domain parameter is the information specified in the domain parameter.

 QALWUSRDMN System

Value Destination Library

Optional Domain

Parameter Domain of Created Object

*ALL Any *DEFAULT User domain

*ALL Any *SYSTEM System domain

*ALL Any *USER User domain

QTEMP QTEMP *DEFAULT User domain

QTEMP QTEMP *SYSTEM System domain

QTEMP QTEMP *USER User domain

Does not contain library

name Library name *DEFAULT System domain

Does not contain library

name Library name *SYSTEM System domain

Does not contain library

name Library name *USER None; error is returned

Note: The QALWUSRDMN system value lists the libraries into which user domain objects can be created. The

libraries can be the special value *ALL or a list of one or more library names.

You must use APIs to access data or information in system-domain user spaces on systems with a

QSECURITY level of 40 or greater. You cannot use MI instructions to directly access system-domain user

objects.

The Retrieve Object Description (QUSROBJD) or List Objects (QUSLOBJ) API can be used to determine

into which domain the user-space object was created.

Optional Parameter Group 3

Transfer size request

INPUT; BINARY(4)

 The number of pages to be transferred between main storage and auxiliary storage This is only a

request, as the machine may use a value of its choice in some circumstances. Allowable values

range between 0 and 32 pages. A value of 0 is an indication that the machine should use the

default transfer size for the user space. If this parameter is not specified, the default is 0. A larger

transfer size may allow for better performance of applications processing the user space.

Optimum space alignment

INPUT; CHAR(1)

 Allows the machine to choose optimum alignment for the user space. Choosing optimum

alignment is highly recommended. Applications that manipulate optimally aligned user spaces

may perform significantly better.

 Allowable values are:

1 Choose optimum space alignment. 1 is the default value.

80 System i: Programming Object APIs

0 Do not allow the machine to choose optimum space alignment.

Note: If not using the optimum space alignment, the user space has a maximum size of 16MB minus 512

bytes (16,776,704 bytes). If optimum alignment is specified, the maximum size of the user space is 16MB

minus one disk page (current page size is 4096 bytes, giving a maximum space size of 16,773,120 bytes).

Error Messages

 Message ID Error Message Text

CPF2143 E Cannot allocate object &1 in &2 type *&3.

CPF2144 E Not authorized to &1 in &2 type *&3.

CPF2283 E Authorization list &1 does not exist.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C01 E User space &2 in library &1 not created.

CPD3C01 D Object name &1 is not valid.

CPD3C03 D Extended attribute &1 is not valid.

CPD3C04 D Value &1 for size parameter is not valid.

CPD3C05 D Value &1 for authority parameter is not valid.

CPF3C2B E Extended attribute &1 is not valid.

CPF3C2C E Value &1 for size parameter is not valid.

CPF3C2D E Value &1 for authority parameter is not valid.

CPF3C29 E Object name &1 is not valid.

CPF3C34 E Value &1 for replace option is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C45 E Value &1 not valid for domain parameter.

CPF3C49 E Request for user domain object cannot be granted.

CPF3C90 E Literal value cannot be changed.

CPF3C91 E Value &1 not valid for transfer size request parameter.

CPF3C92 Value &1 not valid for optimum space alignment parameter.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9870 E Object &2 type *&5 already exists in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Delete User Space (QUSDLTUS) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

Object APIs 81

#TOP_OF_PAGE
aplist.htm

The Delete User Space (QUSDLTUS) API deletes user spaces created with the Create User Space

(QUSCRTUS) API. The QUSDLTUS API performs the same function as the Delete User Space

(DLTUSRSPC) command.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*OBJEXIST

User Space Lock

*EXCL

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the user space and the name of the library in which it resides. The first 10 characters

contain the user space name, and the second 10 characters contain the library name.

The user space name can be either a specific name or a generic name, a string of one or more

characters followed by an asterisk (*). If you specify a generic name, QUSDLTUS deletes all user

spaces that have names beginning with the string for which the user has authority.

You can use these special values for the library name:

 *ALL All libraries

*ALLUSR All user-defined libraries, plus libraries containing user data and having names starting with Q.

For information on the libraries included, see *ALLUSR in Generic library names.

*CURLIB The job’s current library

*LIBL The library list

*USRLIBL The user portion of the job’s library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF2105 E Object &1 in &2 type *&3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library &1.

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted.

CPF2125 E No objects deleted.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

82 System i: Programming Object APIs

API introduced: V2R1

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve Pointer to User Space (QUSPTRUS) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Return pointer Output PTR(SPP)

 Optional Parameter:

 3 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve Pointer to User Space (QUSPTRUS) API retrieves a pointer to the contents of a user-domain

user space. The data in that user space then can be directly manipulated by high-level language programs

that support pointers, such as C or COBOL. The QUSPTRUS API will not return a pointer to a

system-domain user space; you must use system APIs to access system-domain user spaces. If you

attempt to retrieve the pointer to a system-domain user space, an error will be returned.

The QUSPTRUS API even returns a pointer to an object that is subject to an exclusive (*EXCL) lock. If

you create application programs using HLLs that can directly update user spaces using pointers (instead

of using the Change User Space (QUSCHGUS) API), you should use your own synchronization data

methods. You can use one of the following methods to avoid updates at the same time to the same

location within a user space:

v CMPSW MI instruction

v CMPSWP MI instruction

v LOCK MI instruction

v LOCKSL MI instruction

v Allocate Object (ALCOBJ) command

Use of the QUSPTRUS API does not update the object usage information (such as last changed date, last

date used, and so on). You should use the Change User Space or the Retrieve User Space API to update

the object usage information if needed.

Examples of the API are in Examples: Defining queries, Example: Deleting old spooled files, and

Example: Using the user-defined communications programs for file transfer.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*USE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

Object APIs 83

#TOP_OF_PAGE
aplist.htm

The first 10 characters contain the user space name, and the second 10 characters contain the

name of the library where the user space is located. The special values supported for the library

name are *LIBL and *CURLIB.

Return pointer

OUTPUT; PTR(SPP)

 The variable containing the pointer to the user space after the QUSPTRUS API has completed

running. This parameter must be on a 16-byte boundary alignment.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C05 E One or more errors found while trying to retrieve a pointer.

CPF3C18 E Pointer parameter is not on a 16-byte boundary.

CPD3C18 D Pointer parameter is not on a 16-byte boundary.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C48 E Operation not valid on system domain object.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve User Space (QUSRTVUS) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Starting position Input Binary(4)

3 Length of data Input Binary(4)

4 Receiver variable Output Char(*)

 Optional Parameter Group:

 5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

84 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

The Retrieve User Space (QUSRTVUS) API allows you to retrieve the contents of a user space. The

QUSRTVUS API does not retrieve descriptive information about the user space object, such as its size. To

retrieve information about the attributes of a user space, see “Retrieve User Space Attributes

(QUSRUSAT) API” on page 86.

If you are repeatedly accessing the contents of a user space and are using an HLL that supports pointers,

see “Retrieve Pointer to User Space (QUSPTRUS) API” on page 83. This API provides a pointer to the

user space for improved performance. When you have obtained a pointer, you use pointer arithmetic to

access the contents of a user space.

Note: To determine the starting position for the QUSRTVUS API, you must add 1 to the offset value. In

contrast to the i5/OS
®

list APIs, which use an offset value based on 0 for the starting position, the

QUSRTVUS API uses a value based on 1. For the QUSRTVUS API, the first character in the user space is

at position 1.

Authorities and Locks

Library Authority

*EXECUTE

User Space Authority

*USE

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The first 10 characters contain the user space name, and the second 10 characters contain the

name of the library where the user space is located. The special values supported for the library

name are *LIBL and *CURLIB.

Starting position

INPUT; BINARY(4)

 The first byte of the user space to be retrieved. A value of 1 will identify the first character in the

user space.

Length of data

INPUT; BINARY(4)

 The length of the data to retrieve. This length must not be larger than the size of the variable that

is to receive the data. It must also be greater than 0.

Receiver variable

OUTPUT; CHAR(*)

 The variable that will receive the contents of the user space being retrieved.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Object APIs 85

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C0F E Value &1 for starting position parameter is not valid.

CPF3C06 E Information not retrieved from user space &1.

CPD3C0F D Value &1 for starting position parameter is not valid.

CPD3C12 D Length of data is not valid.

CPD3C14 D Starting position &1 and length &2 cause space overflow.

CPD3C16 D Receiver area too small for length of data &1 specified.

CPD3C20 D Error occurred with receiver variable specified.

CPF3C12 E Length of data is not valid.

CPF3C14 E Starting position &1 and length &2 cause space overflow.

CPF3C16 E Receiver area too small for length of data &1 specified.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve User Space Attributes (QUSRUSAT) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Qualified user space name Input Char(20)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve User Space Attributes (QUSRUSAT) API retrieves information about the current attributes

and the current operational statistics of the user space.

You can also retrieve information about user space attributes by using one of the following:

v The Materialize Space (MATS) machine interface (MI) instruction

v The Retrieve Object Description (QUSROBJD) API described on page

v The Retrieve Object Description (RTVOBJD) command

86 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*USE

User Space Lock

*SHRNUP

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested as long as you specify the length parameter correctly. As a

result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the space information to be returned.

The format names supported are:

 SPCA0100 Basic information

Refer to “SPCA0100 Format” for details on the format.

Qualified user space name

INPUT; CHAR(20)

 The user space for which you want to retrieve information, and the library in which it is located.

The first 10 characters contain the user space name, and the second 10 characters contain the

library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

SPCA0100 Format

The following information about a user space is returned for the SPCA0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 88.

Object APIs 87

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Space size

12 C CHAR(1) Automatic extendibility

13 D CHAR(1) Initial value

14 E CHAR(10) User space library name

Field Descriptions

Automatic extendibility. Whether or not the space is extended automatically by the system when the end

of the space is encountered.

 0 Space is not automatically extendible

1 Space is automatically extendible

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned.

Initial value. The initial value to which future extensions of the user space will be set.

Space size. The size of the user space object in bytes.

User space library name. The library in which the user space is located. This is helpful when *LIBL or

*CURLIB is specified as the library name in the qualified user space name parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

88 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

Object-related APIs

You can use object-related APIs to obtain information about i5/OS
®

objects.

The QUSLOBJ and QUSROBJD APIs return much of the same information. The APIs differ, however, in

several respects:

v The APIs group the returned information differently among their output formats. For example, the

OBJL0300 format of the QUSLOBJ API does not contain exactly the same data as the OBJD0300 format

of the QUSROBJD API.

v The APIs use different data formats for some specific items, such as dates and times.

v The APIs differ in efficiency, depending on your application. In most cases, the QUSROBJD API is

faster at retrieving information about a single object. The QUSLOBJ API is faster at retrieving

information about several objects.

The object-related APIs are:

v “Change Library List (QLICHGLL) API” on page 90 (QLICHGLL) changes the current library, the two

product libraries, and the user part of the job’s library list.

v “Change Object Description (QLICOBJD) API” on page 92 (QLICOBJD) changes object information for

a specific object, similar to the Change Object Description (CHGOBJD) command.

v “Convert Type (QLICVTTP) API” on page 99 (QLICVTTP) converts an object type to and from

hexadecimal format.

v

“Delete Object (QLIDLTO) API” on page 101 (QLIDLTO) deletes objects of an object type listed in

the description of the object type parameter.

v “List Objects (QUSLOBJ) API” on page 108 (QUSLOBJ) generates a list of object names and descriptive

information based on the specified parameters, similar to the Display Object Description (DSPOBJD)

command.

v “Materialize Context (QusMaterializeContext) API” on page 130 (QusMaterializeContext) returns either

the type and subtype of the object or system pointers for all or for a selected set of objects that are

contained by the context.

v “Move Folder to ASP (QHSMMOVF) API” on page 131 (QHSMMOVF) moves a root folder and its

contents from its existing auxiliary storage pool (ASP) to the specified target ASP through a save and

restore process.

v “Move Library to ASP (QHSMMOVL) API” on page 132 (QHSMMOVL) moves a library and its

contents from its existing auxiliary storage pool (ASP) to the specified target ASP through a save and

restore process.

v “Open List of Objects (QGYOLOBJ) API” on page 136 (QGYOLOBJ) generates a list of object names

and descriptive information based on specified selection parameters.

v “Rename Object (QLIRNMO) API” on page 163 (QLIRNMO) renames an existing object to a new object

name or new library name or both and optionally replaces the object, combining the functions of the

Rename Object (RNMOBJ) and the Move Object (MOVOBJ) commands.

v “Retrieve Library Description (QLIRLIBD) API” on page 168 (QLIRLIBD) retrieves attributes for a

specific library, similar to the Retrieve Library Description (RTVLIBD) command.

v “Retrieve Object Description (QUSROBJD) API” on page 175 (QUSROBJD) retrieves object information

for a specific object, similar to the Retrieve Object Description (RTVOBJD) command.

 Top | “Object APIs,” on page 1 | APIs by category

Object APIs 89

#TOP_OF_PAGE
aplist.htm

Change Library List (QLICHGLL) API

 Required Parameter Group:

 1 Current library name Input Char(11)

2 First product library name Input Char(11)

3 Second product library name Input Char(11)

4 User library list names Input Array(*) of Char(11)

5 Number of user library names Input Binary(4)

6 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Change Library List (QLICHGLL) API changes the current library, the two product libraries, and the

user part of the current thread’s library list. This API provides the only way to change the two product

libraries in the library list. The only other way to change the product libraries is using the Create

Command (CRTCMD) or the Create Menu (CRTMNU) command.

When the initial thread’s library list is changed, each library added to the list may be locked with a

shared-read lock. The value of the QLIBLCKLVL system value determines whether libraries in the library

list are locked. If a library is being removed from the initial thread’s library list, and it was locked when

it was added to the library list, the shared-read lock is released. When a secondary thread’s library list is

changed, libraries added to the library list are not locked.

Authority to the library is checked whenever a library name is specified on one of the required

parameters.

You may want to save the current thread’s library list before changing it. The QWCRTVCA API can be

used to retrieve the current thread’s library list. The Retrieve Job Information (QUSRJOBI) API can be

used to retrieve the initial thread’s library list, when the current thread is not the initial thread. You can

then change the library list back to its original value by using the QLICHGLL API with the libraries

saved from the QUSRJOBI or QWCRTVCA API.

Authorities and Locks

Library Authority

*USE

Library Lock

*SHRRD (initial thread only)

 The QLIBLCKLVL system value determines whether libraries in the library list are locked.

Required Parameter Group

Current library name

INPUT;CHAR(11)

 The library that replaces the current library in the library list. (The data is left-justified with a

blank at the end.)

The current library can be, but does not have to be, a duplicate of any library in the library list.

QTEMP cannot be specified for the library name.

The following special values can be used:

 *CRTDFT No library should be in the current library entry in the library list. If objects are created into the

current library, then library QGPL is used as the current default library.

90 System i: Programming Object APIs

*SAME The current library in the library list is not changed.

First product library name

INPUT;CHAR(11)

 The library that replaces the first product library entry in the library list. (The data is left-justified

with a blank at the end.)

A product library may be a duplicate of the current library or of a library in the user part of the

library list. QTEMP cannot be specified for the library name.

The following special values can be used:

 *NONE The first product library entry in the library list is removed.

*SAME The first product library entry in the library list is not changed.

Second product library name

INPUT;CHAR(11)

 The library that replaces the second product library entry in the library list. (The data is

left-justified with a blank at the end.) QTEMP cannot be specified for the library name.

The following special values can be used:

 *NONE The second product library entry in the library list is removed.

*SAME The second product library entry in the library list is not changed.

User library list names

INPUT; ARRAY(*) of CHAR(11)

 The libraries that replace the libraries in the user part of the library list. Specify the names of the

libraries in the order in which they are to be searched. (The data is left-justified with a blank at

the end.)

The same library name cannot be specified more than once. A library cannot exist in the system

part and the user part of the library list.

Number of user library names

INPUT;BINARY(4)

 The total number of library names that will be changed in the user part of the library list.

This must be a value from -1 through 250. There is a limit of 250 libraries in the user part of the

library list. When either of the following values is specified, the user library list names parameter

is ignored:

 -1 The user part of the library list remains the same.

0 All libraries in the user part of the library list are removed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF2106 E Library list not changed.

CPF2110 E Library &1 not found.

Object APIs 91

Message ID Error Message Text

CPF2113 E Cannot allocate library &1.

CPF2133 E First product library on library list destroyed.

CPF2134 E Second product library on library list destroyed.

CPF2137 E Current library on library list destroyed.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2184 E Library list not replaced.

CPF219A E Library QTEMP cannot be specified.

CPF219F E Number of libraries for library list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Change Object Description (QLICOBJD) API

 Required Parameter Group:

 1 Returned library name Output Char(10)

2 Object and library name Input Char(20)

3 Object type Input Char(10)

4 Changed object information Input Char(*)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Change Object Description (QLICOBJD) API lets you change object information for a specific object

similar to the Change Object Description (CHGOBJD) command. Unlike the CHGOBJD command, this

can be used on all

library-based

external object types. This API supports changing more parts of the

object descriptive information than are supported using the CHGOBJD command.

Before any change other than to the text or the days used count and days used count reset date is made

with this API, the allow change by program field for the object is checked. If this API cannot be used to

change the object, message CPF219B is issued.

When an object has been successfully updated by the API, the changed by program field is updated. In

addition, the change date and time (date and time the object was changed) field is also updated unless

you also specify that the change date and time field is not to be updated. You can only specify that the

change date and time field is not to be updated when the only field to be updated is the last used date

field.

If the object being changed is currently journaled, journal entries of type CG, CH, or ZB as appropriate

for the object type are deposited in the journal to record the change.

Note: For additional information regarding journaling, see Journal management.

Authorities and Locks

Library Authority

*EXECUTE

92 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

Non-*FILE Object Authority

*OBJMGT

*FILE Object Authority

*OBJOPR and *OBJMGT

Object Lock

*EXCLRD

Required Parameter Group

Returned library name

OUTPUT; CHAR(10)

 The name of the library that contains the changed object. If *CURLIB, *LIBL, or a name is

specified for the library name in the object and library name parameter, the value returned is the

name of the library where the object was found.

Object and library name

INPUT; CHAR(20)

 The object for which you want to change information and the library in which it is located. The

first 10 characters contain the object name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The job’s library list

Object type

INPUT; CHAR(10)

 The type of object for which you want to change the information. You can only specify specific

external object types. An asterisk (*) must precede the object type. For a complete list of the

available object types, see External object types.

Changed object information

INPUT; CHAR(*)

 The information for the object that you want to change. The information must be in the following

format:

 Number of variable length

records

BINARY(4)
Total number of all of the variable length records. If the value of this field is less than

0, an error message is returned. It is not an error if this field is 0. If it is 0, the API will

make no changes to the object’s description.

Variable length records The fields of the object’s description to change and the data used for the change. For

the specific format of the variable length record, see “Format for Variable Length

Record.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Variable Length Record

The following table defines the format for the variable length records.

Object APIs 93

Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of data

8 8 CHAR(*) Data

If the length of the data is longer than the related field’s data length, the data will be truncated at the

right. No message will be issued.

If the length of the data is smaller than the related field’s data length, the data will be padded with

blanks at the right. No message will be issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The data used to change a specific field of the object description.

Validity checking is done on the values specified for the following keys to verify that they are ’0’ or ’1’.

v Key 8 (Allow change by program)

v Key 11 (Reset days used count and update days used count reset date)

v Key 15 (Update last used date and days used count)

v Key 16 (Update change date and time)

Validity checking is done on the value specified for key 19 (Created by user) to verify that it is not *IBM.

Validity checking is done on the value specified for key 20 (Creation date and time) to verify that it

contains numeric data in the correct ranges. The date portion of the value (CYYMMDD) must be in the

range of 0280824 (August 24, 1928) to 1710509 (May 9, 2071). The time portion of the value (HHMMSS)

must be in the range 000000 to 235959.

The data specified for other keys is not validity checked.

Key. Identifies a field of the object’s description to change. Only specific fields of the object’s description

can be changed. See “Keys” for the list of valid keys.

Length of data. The length of the data used to change a specific field of the object’s description. If the

value of this field is 0 or negative, an error message is returned.

Keys

The following table lists the valid keys for the key field of the variable length record.

 Key Type Field

1 CHAR(30) Source file

2 CHAR(13) Source file date and time

3 CHAR(13) Compiler

4 CHAR(8) Object control level

5 CHAR(13) Licensed program

94 System i: Programming Object APIs

Key Type Field

6 CHAR(7) Program temporary fix (PTF)

7 CHAR(6) Authorized program analysis report (APAR)

8 CHAR(1) Allow change by program

9 CHAR(10) User-defined attribute

10 CHAR(50) Text

11 CHAR(1) Reset days used count and update days used count reset date

12 CHAR(4) Product option load ID

13 CHAR(4) Product option ID

14 CHAR(4) Component ID

15 CHAR(1) Update last used date and days used count

16 CHAR(1) Update change date and time

17 CHAR(10) Reset member’s days used count and update member’s days used

count reset date

18 CHAR(8) System created on

19 CHAR(10) Created by user

20 CHAR(13) Creation date and time

Field Descriptions

Allow change by program. Whether to allow users to make changes to the object’s description other than

to the text or the days used count and days used count reset date with this API. It must have a value of

’0’ or ’1’.

 ’0’ Changes other than to the text or the days used count and days used count reset date are not allowed

with this API. Once this field has been changed to ’0’, this API cannot be used to make any further

changes to the object’s description other than to the text or the days used count and days used count

reset date.

’1’ Changes are allowed with this API. This API can be used to make all changes to the object’s description.

Authorized program analysis report (APAR). The authorized program analysis report identification that

caused this object to be patched. IBM
®

APARs have an uppercase alphabetic character followed by 5

decimal numbers. If you want to conform with the system, this format should be followed.

Compiler. The name, version level, release level, and modification level of the compiler. Objects created

with IBM products will have the licensed program name of the compiler in the compiler name field and a

version field in the VxRxMy format where x must be 0-9 and y must be 0-9 or A-Z. If you want to

conform with the system, this format should be followed.

 Compiler name CHAR(7)

Version CHAR(6)

Component ID. The product administrator owns this field. It can be used to track information about

objects, such as object size, at a lower level than the product option ID.

Created by user. The name of the user that created the object. A value of *IBM may not be specified. If

it is, message CPF2199 is issued.

Object APIs 95

Creation date and time. The date and time the object was created. The date and time is specified in

the CYYMMDDHHMMSS format:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx, etc.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

The date portion of the value (CYYMMDD) must be in the range of 0280824 (August 24, 1928) to 1710509

(May 9, 2071). The time portion of the value (HHMMSS) must be in the range 000000 to 235959.

Changing the creation date of a database file does not change the creation date of any file members in the

file.

Licensed program. The name, version level, release level, and modification level of the licensed program.

Objects that are a part of an IBM licensed program have a valid licensed program name (7 characters

containing 0-9 and uppercase A-Z). The version is in the VxRxMy format where x must be 0-9 and y

must be 0-9 or A-Z. If you want to conform with the system, this format should be followed.

 Licensed program

name

CHAR(7)

Version CHAR(6)

Object control level. The object control level for the object. IBM programs will have an 8-character

decimal value.

Product option ID. Identifies part of a licensed program (product). Products can have multiple options.

Objects that are a part of an IBM licensed program must be 0000 (*BASE) through 0099. If you want to

conform with the system, this format should be followed.

Product option load ID. The language identifier associated with the object. Objects that are a part of an

IBM licensed program must have one of the allowed languages in the 29xx format. If you want to

conform with the system, this format should be followed.

Program temporary fix. The program temporary fix (PTF) that resulted in the creation of the object. For

IBM objects the first 2 characters are a prefix ID, and the remaining 5 characters are the program change

ID (decimal). The field is blank if the object was not changed because of a PTF. If you want to conform

with the system, this format should be followed.

Reset days used count and update days used count reset date. This key is used to:

v Reset the number of days an object has been used on the system.

v Update the date the days used count was last reset to 0.

It must have a value of ’0’ or ’1’.

 ’0’ Neither the days used count nor the days used count reset date shown on the Display Object

Description panel is updated.

’1’ The days used count is set to 0. The days used count reset date shown on the Display Object

Description panel is updated to the current system date.

Note: For a database file, the days used count is reset and the days used count reset date is updated for

all members in the file.

96 System i: Programming Object APIs

This key (11) and key 15 (update last used date and days used count) cannot both be specified with a

value of ’1’. These keys are incompatible because key 11 will change the days used count to 0 and key 15

will increase the days used count. If both keys 11 and 15 are specified with a value of ’1’, error message

CPF21A1 is issued.

This key (11) with a value of ’1’ and key 17 (reset member’s days used count and update member’s days

used count reset date) cannot both be specified. These keys are incompatible because key 11 will change

the days used count for all members in a file and key 17 will change the days used count for a single

member. If key 11 with a value of ’1’ and key 17 are both specified, error message CPF21A1 is issued.

This key cannot be specified for *DOC object types or when object usage information is not updated for

the specified object type. Object usage information is not updated for all object types. For more details on

usage information, see Detecting unused objects on the system. Use Qp0lSetAttr()—Set Attributes to

update this field for *DOC object types. If this key is not allowed for an object type, error message

CPF2131 is issued.

Reset member’s days used count and update member’s days used count reset date. This key is used to:

v Reset the number of days a database file member has been used on the system.

v Update the date that the member’s days used count was last reset to 0.

This field must be a valid 10-character file-member name and must be padded with blank characters. No

special values are allowed.

Note: This key resets the days used count for a single member only. To reset the days used count for all

members in a database file, specify key 11.

This key can be specified only for an object type of *FILE. If the object is not a *FILE object, error

message CPF2131 is issued.

This key (17) and key 11 (reset days used count and update days used count reset date) with a value of

’1’ cannot both be specified. These keys are incompatible because key 11 will change the days used count

for all members in a file and key 17 will change the days used count for a single member. If key 11 with

a value of ’1’ and key 17 are both specified, error message CPF21A1 is issued.

This key (17) and key 15 (update last used date and days used count) with a value of ’1’ cannot both be

specified. These keys are incompatible because key 15 will increase the days used count and key 17 will

change the days used count to 0 for a member. If key 15 with a value of ’1’ and key 17 are both specified,

error message CPF21A1 is issued.

Source file. The name of the source file used to create the object, the name of the library in which it is

located, and the name of the source file member.

 Source file name CHAR(10)

Library name CHAR(10)

Member name CHAR(10)

Objects created with IBM products have valid object names for the qualified source file name. If you

want to conform with the system, this format should be followed.

Source file date and time. The date and time the member in the source file was last updated. Objects

created with IBM products will be in the CYYMMDDHHMMSS format:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

Object APIs 97

qsetattr.htm

DD Day

HH Hour

MM Minute

SS Second

If you want to conform with the system, this format should be followed.

System created on. The name of the system where the object was created.

Text. The user-defined text that briefly describes the object and its function.

Update change date and time. Update the date and time the object was last changed. This is useful if

you want to update an object’s change date and time and do not want to update any other fields or if

you want to update the last used date and days used count (key 15) and do not want to update the

change date and time.

 ’0’ The change date and time is not updated.

’1’ The change date and time is updated to the current system date and time.

Note: For a database file, the change date and time is updated for all members in the file and the file

itself.

This key cannot be specified with any other key except key 15 (update last used date and days used

count). If it is, message CPF21A6 is issued.

Update last used date and days used count. This key is used to:

v Update the last used date to the current system date.

v Increase the days used count.

It must have a value of ’0’ or ’1’.

 ’0’ The last used date is not updated. The days used count is not increased.

’1’ The last used date is updated to the current system date. If this is the first use of the object today (since

midnight), the days used count is increased.

Note: For a database file, the last used date and days used count are updated for all members in the

file.

The last used date cannot be changed for a database file that does not have any members. Error

message CPF21A2 will be issued.

This key cannot be specified for *DOC object types or when object usage information is not updated for

the specified object type. Object usage information is not updated for all object types. For more details on

usage information, see Detecting unused objects on the system. Use Qp0lSetAttr()—Set Attributes to

update this field for *DOC object types. If this key is not allowed for an object type, error message

CPF2131 is issued.

This key (15) and key 11 (reset days used count and update days used count reset date) cannot both be

specified with a value of ’1’. These keys are incompatible because key 11 will change the days used count

to 0 and key 15 will increase the days used count. If keys 11 and 15 are both specified with a value of ’1’,

error message CPF21A1 is issued.

This key (15) with a value of ’1’ and key 17 (reset member’s days used count and update the member’s

days used count reset date) cannot both be specified. These keys are incompatible because key 15 will

98 System i: Programming Object APIs

qsetattr.htm

increase the days used count and key 17 will change the days used count to 0 for a member. If key 15

with a value of ’1’ and key 17 are both specified, error message CPF21A1 is issued.

User-defined attribute. An attribute you define. This should not be confused with the extended attribute

of the object. The extended attribute is set by the system when an object is created.

Error Messages

 Message ID Error Message Text

CPF21A1 E Key &1 not allowed with key &2.

CPF21A2 E Last used date for &1 in &2 type *FILE cannot be changed.

CPF21A6 E Cannot specify key &1 with other specified keys.

CPF2131 E Key &1 not allowed with object type *&2.

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF219B E Cannot change &1 in &2 type *&3.

CPF219E E Object type *&1 not valid external object type.

CPF2199 E &2 not valid for key &1.

CPF24B4 E Severe error while addressing parameter list.

CPF2451 E Message queue &1 is allocated to another job.

CPF3CF1 E Error code parameter not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF36F7 E Message queue QSYSOPR is allocated to another job.

CPF7000 E Errors from journaling.

CPF7304 E File &1 in &2 not changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9815 E Member &5 file &2 in library &3 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Object APIs,” on page 1 | APIs by category

Convert Type (QLICVTTP) API

 Required Parameter Group:

 1 Conversion Input Char(10)

2 Symbolic object type I/O Char(10)

Object APIs 99

#TOP_OF_PAGE
aplist.htm

3 Hexadecimal object type I/O Char(2)

4 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Convert Type (QLICVTTP) API lets you convert an object type from the external symbolic format to

the internal hexadecimal format and vice versa.

You can use the QLICVTTP API to:

v Convert a specific symbolic object type to an equivalent hexadecimal object type

v Convert a specific hexadecimal object type to an equivalent symbolic object type

Authorities and Locks

None.

Required Parameter Group

Conversion

INPUT; CHAR(10)

 The type of conversion to perform.

 *HEXTOSYM An object type in hexadecimal form is converted to an equivalent symbolic object type.

*SYMTOHEX A symbolic object type is converted to an equivalent hexadecimal form.

Symbolic object type

I/O; CHAR(10)

 The external symbolic name given to an object type. An asterisk (*) precedes the object type. The

value of the conversion parameter specified determines if this is an input or output field. For a

complete list of the available external object types, see External object types.

As an example, if the value of the Conversion field is ’*SYMTOHEX’ and the value of the

Symbolic object type field is ’*LIB’, a value of x’0401’ is returned in the Hexadecimal object type

field. If the value of the conversion field is ’*HEXTOSYM’ and the value of the Hexadecimal

object type field is x’0401’, a value of ’*LIB’ is returned in the Symbolic object type field.

Hexadecimal object type

I/O; CHAR(2)

 The MI representation of an external object type. This field is in hexadecimal form. The value of

the conversion specified determines if this is an input or output field. For a list of the

hexadecimal formats associated with external object types, see External object types.

As an example, if the value of the Conversion field is ’*SYMTOHEX’ and the value of the

Symbolic object type field is ’*DTAARA’, a value of x’190A’ is returned in the Hexadecimal object

type field. If the value of the conversion field is ’*HEXTOSYM’ and the value of the Hexadecimal

object type field is x’190A’, a value of ’*DTAARA’ is returned in the Symbolic object type field.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

100 System i: Programming Object APIs

Error Messages

 Message ID Error Message Text

CPF2101 E Object type *&1 not valid.

CPF2102 E Object type and subtype code &1 not valid.

CPF219C E Conversion value &1 not valid.

CPF219D E Object type &1 not valid external object type.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Object APIs,” on page 1 | APIs by category

Delete Object (QLIDLTO) API

 Required Parameter Group:

 1 Object and library name Input Char(20)

2 Object type Input Char(10)

3 Auxiliary storage pool (ASP) device Input Char(10)

4 Remove message Input Char(1)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 107.

The Delete Object (QLIDLTO) API is used to delete objects of an object type listed in the description of

the object type parameter. Many, but not all, of the library-based external object types on the system can

be deleted using this API. You can use the corresponding Delete (DLTxxx) command to delete an object

of most types that are not supported by this API although there are some object types for which there is

no delete command (for example: *EXITRG, *JOBSCD, *PRDAVL, *RCT). You can also use the

corresponding DLTxxx command (if one exists) to delete an object of a type that is supported by this API.

A few of the DLTxxx commands for supported object types allow an additional parameter to be specified

in addition to the object name and library name. For those object types, this API does not allow you to

specify those additional parameters and uses documented values for those parameters. The notes column

in Supported External Object Types shows those values as command keywords and values. If those

values do not meet your requirements, you will need to use the DLTxxx command specifying the desired

additional parameters to delete the objects, rather than this API.

Restrictions

1. All restrictions that apply to the Delete object (DLTxxx) command for each supported object type also

apply to this API.

2. See Supported External Object Types for more information.

Authorities and Locks

Auxiliary Storage Pool (ASP) Device Authority

Use (*USE)

Object APIs 101

#TOP_OF_PAGE
aplist.htm
#HDROBJTYPE
#HDROBJTYPE

Library Authority

Execute (*EXECUTE). Additional library authority requirements may be listed for some object

types in Supported External Object Types.

Object Authority

See Supported External Object Types for the authorities required for each object type.

Library Lock

*EXCL if deleting a library; otherwise *SHRUPD

Object Lock

*EXCL

Required Parameter Group

Object and library name

INPUT; CHAR(20)

 The objects which you want to delete and the library or libraries from which the objects are to be

deleted. The first 10 characters contain a simple object name, a generic object name, or *ALL and

the second 10 characters contain the library name or one of several special values.

A generic name is a character string that contains one or more characters (the prefix) followed by

an asterisk (*). When a generic name is specified, all objects of the specified object type that have

names with the same prefix as the generic name are deleted from the specified library or libraries.

When *ALL is specified for the object name, all objects of the specified object type are deleted

from the specified library. When *ALL is specified for the object name, the library name must be

a specific library name (it cannot be a special value.)

Note: When an object name of *ALL is specified, there are no restrictions for the name of the

library. System library names such as library QSYS are allowed, but be very careful about

specifying a system library name.

When *ALL is not specified for the object name, you can use these special values for the library

name or use a specific library name:

 *ALL All libraries in auxiliary storage pools (ASPs) specified for the auxiliary storage pool (ASP) device

parameter will be searched. The only QTEMP library that is searched is the QTEMP library for the

job in which the API is invoked. All objects matching the specified name and object type in all

libraries are deleted.

*ALLUSR All user libraries in ASPs specified for the auxiliary storage pool (ASP) device parameter are

searched. For information on the libraries included, see *ALLUSR in Generic library names.

*CURLIB The current library for the thread is used to locate the object. If no library is specified as the

current library for the thread, the QGPL library is used. When this value is used, the auxiliary

storage pool (ASP) device name in the auxiliary storage pool (ASP) device parameter must be an

asterisk (*).

*LIBL All libraries in the library list for the thread are searched until a match is found. If a specific object

name is specified (instead of a generic name or *ALL), only the first object found with that name

is deleted. When this value is used, the auxiliary storage pool (ASP) device name in the auxiliary

storage pool (ASP) device parameter must be an asterisk (*).

*USRLIBL If a current library entry exists in the library list for the thread, the current library and the libraries

in the user portion of the library list are searched. If there is no current library entry, only the

libraries in the user portion of the library list are searched. If a specific object name is specified

(instead of a generic name or *ALL), only the first object found with that name is deleted. When

this value is used, the auxiliary storage pool (ASP) device name in the auxiliary storage pool

(ASP) device parameter must be an asterisk (*).

Object type

INPUT; CHAR(10)

102 System i: Programming Object APIs

#HDROBJTYPE
#HDROBJTYPE

The type of object which you want to delete. You can only delete objects of one type with each

invocation of this API. For a list of the supported object types, see Supported external object

types. You must include an asterisk (*) as the first character of the object type.

Auxiliary storage pool (ASP) device

Input; CHAR(10)

 The name of an auxiliary storage pool (ASP) device in which storage is allocated for the library

that contains the object. The ASP device must have a status of ’Available’. This field must be an

asterisk (*) when *CURLIB, *LIBL, or *USRLIBL is specified for the library name in the object and

library name parameter. You can use one of the following special values or use a specific ASP

device name:

 * The ASPs that are currently part of the thread’s library name space will be searched to locate the

library. This includes the system ASP (ASP 1), all defined basic user ASPs (ASPs 2-32), and, if the

thread has an ASP group, the primary and secondary ASPs in the thread’s ASP group.

*SYSBAS The system ASP (ASP 1) and all defined basic user ASPs (ASPs 2-32) will be searched to locate the

library. No primary or secondary ASPs will be searched, even if the thread has an ASP group.

*CURASPGRP If the thread has an ASP group, the primary and secondary ASPs in the ASP group will be

searched to locate the library. The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32)

will not be searched.

*ALLAVL All available ASPs will be searched. This includes the system ASP (ASP 1), all defined basic user

ASPs (ASPs 2-32), and all available primary and secondary ASPs (ASPs 33-255 with a status of

’Available’). The ASP groups are searched in alphabetical order by the primary ASP. The system

ASP and all defined basic user ASPs are searched after the ASP groups. ASPs and libraries to

which the user is not authorized are bypassed and no authority error messages are sent.

Remove message

INPUT; CHAR(1)

 Whether or not to remove completion and informational messages related to the deletion of

objects from the joblog. Messages are only removed if the object was successfully deleted.

Diagnostic and escape messages are not removed for objects that could not be deleted. The

following values can be specified:

 0 Do not remove the completion and informational messages related to the deletion of objects from the joblog.

1 Remove the completion and informational messages related to the deletion of objects from the joblog.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Supported External Object Types

The following table lists the object types supported by this API. It also shows the values used when the

equivalent Delete (DLTxxx) command allows an additional parameter to be specified. Note that this API

does not use the DLTxxx commands and therefore changes made to the defaults or to the authority for

those commands will not affect the operation of this API. Additional information related to the object

type is also shown.

 Object type Description Authorities Notes

*ALRTBL Alert table *OBJEXIST

*AUTL Authorization list *ALLOBJ or be owner of

*AUTL

QSYS only

*BNDDIR Binding directory *OBJEXIST

Object APIs 103

#HDROBJTYPE
#HDROBJTYPE

Object type Description Authorities Notes

*CFGL Configuration list *OBJEXIST QSYS only

*CHTFMT Chart format *OBJEXIST

*CLD C/400
®

locale description *OBJEXIST and *OBJMGT

*CLS Class *OBJEXIST

*CMD Command *OBJEXIST

*CNNL Connection list *OBJEXIST QSYS only

*COSD Class-of-service description *OBJEXIST QSYS only

*CRQD Change request description *OBJEXIST

*CSI Communications side

information

*OBJEXIST

*CSPMAP Cross-system product map *OBJEXIST

*CSPTBL Cross-system product table *OBJEXIST

*CTLD Controller description *OBJEXIST QSYS only; *CTLD must be

varied offline

*DEVD Device description *OBJEXIST. To delete an

associated *OUTQ,

*OBJEXIST for the *OUTQ

and *READ for the

QUSRSYS library are also

required

QSYS only; *DEVD must be

varied offline

*DTAARA Data area *OBJEXIST *LDA, *GDA, and *PDA

data areas cannot be

deleted

*DTADCT Data dictionary *OBJEXIST and *USE Must be in library with

same name as *DTADCT

*DTAQ Data queue *OBJEXIST

*EDTD Edit description *OBJEXIST Specify full *EDTD name in

format QEDITn

*FCT Forms control table *OBJEXIST

*FILE File *OBJEXIST and *OBJOPR SYSTEM(*LCL)

RMVCST(*RESTRICT); See

DLTF command for

restrictions

*FNTRSC Font resource *OBJEXIST

*FNTTBL Font mapping table *OBJEXIST

*FORMDF Form definition *OBJEXIST

*FTR Filter *OBJEXIST

*GSS Graphics symbol set *OBJEXIST

*IGCDCT Double-byte character set

(DBCS) conversion

dictionary

*OBJEXIST

*IGCSRT Double-byte character set

(DBCS) sort table

*OBJEXIST

*IGCTBL Double-byte character set

(DBCS) font table

*OBJEXIST

104 System i: Programming Object APIs

Object type Description Authorities Notes

*IMGCLG Image Catalog *OBJEXIST for *IMGCLG

and *X for each directory in

the *IMGCLG path name

QUSRSYS only;

KEEP(*YES)

DEPIMGCLG(*NODELETE)

*IPXD Internetwork packet

exchange (IPX) description

*OBJEXIST QSYS only

*JOBD Job description *OBJEXIST

*JOBQ Job queue *OBJEXIST See DLTJOBQ command for

restrictions

*JRN Journal *OBJEXIST and *OBJOPR See DLTJRN command for

restrictions

*JRNRCV Journal receiver *OBJEXIST, *OBJOPR, and a

data authority other than

*EXECUTE

DLTOPT(*NONE); See

DLTJRNRCV command for

restrictions

*LIB Library *OBJEXIST and *USE for

*LIB and the authority

listed in this table for each

object type in the library. If

you do not have these

authorities for the *LIB,

nothing is deleted. If you

do not have the correct

authority for one or more

objects in the *LIB, those

objects and the *LIB are not

deleted.

QSYS only; See DLTLIB

command for restrictions

*LIND Line description *OBJEXIST QSYS only; *LIND must be

varied offline and, if you

are deleting a line attached

to a frame relay network

interface, the *NWID must

also be varied offline

*LOCALE Locale *OBJEXIST

*MEDDFN Media definition *OBJEXIST

*MENU Menu description *OBJEXIST and *OBJOPR DLTREFOBJ(*NONE)

*MGTCOL Management collection *OBJEXIST and *USE

*MODD Mode description *OBJEXIST QSYS only

*MODULE Compiler unit *OBJEXIST

*MSGF Message file *OBJEXIST

*MSGQ Message queue *OBJEXIST, *USE, and *DLT *MSGQ queue to be deleted

cannot be QSYSOPR or a

work station message

queue

*NODGRP Node group *OBJEXIST

*NODL Node list *OBJEXIST

*NTBD NetBIOS description *OBJEXIST QSYS only

*NWID Network interface

description

*OBJEXIST QSYS only; *NWID must be

varied offline

Object APIs 105

Object type Description Authorities Notes

*NWSCFG Network server

configuration

*OBJEXIST and *IOSYSCFG

special authority. When a

non-default value was

specified for the

IPSECRULE, CHAPAUT, or

SPCERTID parameters

when the object was

created, *SECADM special

authority.

QUSRSYS only; Also

deletes the associated

validation list; The

*NWSCFG cannot be

deleted if an active *NWSD

is associated with it

*NWSD Network server description *OBJEXIST QSYS only

*OUTQ Output queue *OBJEXIST See DLTOUTQ command

for restrictions

*OVL Overlay *OBJEXIST

*PAGDFN Page definition *OBJEXIST

*PAGSEG Page segment *OBJEXIST

*PDFMAP Portable Document Format

map

*OBJEXIST

*PDG Print Descriptor Group *OBJEXIST

*PGM Program *OBJEXIST

*PNLGRP Panel group definition *OBJEXIST

*PSFCFG Print Services Facility™

configuration

*OBJEXIST for *PSFCFG

and *IOSYSCFG special

authority

*QMFORM Query management form *OBJEXIST

*QMQRY Query management query *OBJEXIST

*QRYDFN Query definition *OBJEXIST

*SBSD Subsystem description *OBJEXIST and *USE *SBSD to be deleted cannot

have an associated active

subsystem

*SCHIDX Search index *OBJEXIST

*SPADCT Spelling aid dictionary *OBJEXIST

*SQLPKG Structured Query Language

package

*OBJEXIST An *SQLPKG package on a

remote system cannot be

deleted with this API; See

DLTSQLPKG command for

restrictions.

*SQLUDT User-defined SQL type *OBJEXIST

*SRVPGM Service program *OBJEXIST

*SSND Session description *OBJEXIST

*TBL Table *OBJEXIST

*TIMZON Time zone description *OBJEXIST QSYS only; *TIMZON to be

deleted cannot be one

specified in the QTIMZON

system value

*USRIDX User index *OBJEXIST

*USRQ User queue *OBJEXIST

*USRSPC User space *OBJEXIST

106 System i: Programming Object APIs

Object type Description Authorities Notes

*VLDL Validation list *OBJEXIST

*WSCST Workstation user

customization object

*OBJEXIST

Usage Notes

This API is conditionally threadsafe. For multithreaded jobs, see the restrictions in the corresponding

Delete (DLTxxx) command.

In addition to the following error messages, additional CPFxxxx messages can be returned. See the

messages in the corresponding Delete (DLTxxx) command.

Error Messages

 Message ID Error Message Text

CPFA030 E Object already in use.

CPFB8ED E Device description &1 not correct for operation.

CPF2105 E Object &1 in &2 type &3 not found.

CPF2110 E Library &1 not found.

CPF2113 E Cannot allocate library.

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2117 E &4 objects type *&3 deleted. &5 objects not deleted..

CPF2125 E No objects deleted.

CPF2166 E Library name &1 not valid.

CPF2173 E Value for ASPDEV not valid with special value for library.

CPF2176 E Library &1 damaged.

CPF2182 E Not authorized to library &1.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF21B7 E Not all objects of type *&3 deleted

CPF21B8 E &4 *&3 objects in ASP group &6 deleted; &5 not deleted.

CPF21B9 E No objects in ASP group &4 deleted.

CPF218C E &1 not a primary or secondary ASP.

CPF24B4 E Severe error while addressing parameter list.

CPF2605 E Not able to allocate &1.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9825 E Not authorized to device &1.

CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V6R1

 Top | “Object APIs,” on page 1 | APIs by category

Object APIs 107

#TOP_OF_PAGE
aplist.htm

List Objects (QUSLOBJ) API

 Required Parameter Group:

 1 Qualified user space object Input Char(20)

2 Format name Input Char(8)

3 Object and library name Input Char(20)

4 Object type Input Char(10)

 Optional Parameter Group 1:

 5 Error Code I/O Char(*)

 Optional Parameter Group 2:

 6 Authority control Input Char(*)

7 Selection control Input Char(*)

 Optional Parameter Group 3:

 8 Auxiliary storage pool (ASP) control Input Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The List Objects (QUSLOBJ) API lets you generate a list of object names and descriptive information

based on specified selection parameters. This API returns information similar to the Display Object

Description (DSPOBJD) command. An advantage over the DSPOBJD command is that you can perform

authority checking on the objects and libraries. You can get a list of objects with only a certain status,

which you cannot do with the DSPOBJD command. The QUSLOBJ API places the list in the specified

user space. The generated list replaces any existing list in the user space.

You can use the QUSLOBJ API to:

v List objects in a library

v List objects of only one type

v Write an application program to move programs from the QRPLOBJ library (or the QRPLxxxxx library

where ’xxxxx’ is the number of a primary auxiliary storage pool) back to where they were originally

located

v Provide backup analysis based on when the object was last saved or last updated

v Provide source member and object analysis from source member information to verify that the current

source was used to create the specified object

The QUSLOBJ API returns information in several formats. All formats except OBJL0100 include an

information status field that describes the completeness and validity of the information. Be sure to check

the information status field before using any other information returned.

Authorities and Locks

If you are authorized to the library, some object information is always returned for the objects meeting

the search criteria identified in the required parameter group. To return any detailed object information in

format OBJL0200 and above, the user must be authorized to the objects. The information status field in

format OBJL0200 is set to ’A’ when the user is not authorized to the objects. A value of *NOTAVL will be

returned for the object auditing information unless you have either all object (*ALLOBJ) or audit

(*AUDIT) special authority.

Auxiliary Storage Pool (ASP) Device Authority

*EXECUTE when a specific auxiliary storage pool (ASP) device name is specified for the auxiliary

storage pool (ASP) control parameter.

108 System i: Programming Object APIs

Object Authority

To return detailed object information, some authority other than *EXCLUDE is needed when

optional parameter group 2 is not specified.

Object Library Authority

*EXECUTE when optional parameter group 2 is not specified.

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space object

INPUT; CHAR(20)

 The name of the *USRSPC object that is to receive the generated list. The first 10 characters

contain the user space object name, and the second 10 characters contain the name of the library

where the user space is located. The special values supported for the library name are *LIBL and

*CURLIB.

Format name

INPUT; CHAR(8)

 The format of the information returned on each object that is requested. You must use one of the

following format names:

 OBJL0100 Object names (fastest)

OBJL0200 Text description and extended attribute

OBJL0300 Basic object information

OBJL0400 Creation information

OBJL0500 Save and restore information; journal information

OBJL0600 Usage information

OBJL0700 All object information (slowest)

For details about the formats, see “Format of the Generated Lists” on page 116. For performance

reasons, you should choose the format that returns only as much information as you need. The

higher the number of the format name, the more information is returned and the more time it

takes to process.

Object and library name

INPUT; CHAR(20)

 The object and library names to place in the *USRSPC object. The first 10 characters contain the

object name, which may be a simple name, a generic name, or the special values of *ALL,

*ALLUSR, or *IBM. If *ALLUSR or *IBM is used, the library name must be *LIBL or QSYS and

the object type parameter must be *LIB.

1. When *ALLUSR is specified with a library name of *LIBL and an object type parameter of

*LIB, a list of all user libraries in the thread’s library name space is returned. When *LIBL is

specified, the auxiliary storage pool (ASP) device name must be an asterisk (*) if the auxiliary

storage pool (ASP) control parameter is specified. Refer to *ALLUSR in the description of the

second 10 characters of this parameter for a definition of user libraries.

2. When *ALLUSR is specified with a library name of QSYS and an object type parameter of

*LIB, a list of all user libraries in the auxiliary storage pools defined by the auxiliary storage

Object APIs 109

pool (ASP) control parameter is returned. Refer to *ALLUSR in the description of the second

10 characters of this parameter for a definition of user libraries.

3. When *IBM is specified with a library name of *LIBL and an object type of *LIB, a list of

libraries in the thread’s library name space that are saved or restored on the Save Library

(SAVLIB) or Restore Library (RSTLIB) CL command with LIB(*IBM) is returned. When *LIBL

is specified, the auxiliary storage pool (ASP) device name must be an asterisk (*) if the

auxiliary storage pool (ASP) control parameter is specified.

4. When *IBM is specified with a library name of QSYS and an object type of *LIB, a list of

libraries in the auxiliary storage pools specified by the auxiliary storage pool (ASP) control

parameter that are saved or restored on the Save Library (SAVLIB) or Restore Library

(RSTLIB) CL command with LIB(*IBM) is returned.

Library name errors are reported with escape messages when a single library is specified. When

searching a set of libraries (library specified as *ALL, *ALLUSR, *LIBL, or *USRLIBL or auxiliary

storage pool (ASP) device name specified as *ALLAVL), library errors are reported with

diagnostic messages and processing continues. Library authority error messages are not sent

when searching a set of libraries. Escape messages are not sent for object name errors. To

determine if errors occurred on the object, use the number of list entries field returned in the

generic header and the information status field in format OBJL0200.

The second 10 characters identify the name of the library or libraries to search for the specified

objects. The following special values are allowed:

 *ALL All libraries in the auxiliary storage pools defined by the auxiliary storage pool (ASP) control

parameter are searched.

*ALLUSR All user libraries in the auxiliary storage pools (ASPs) defined by the auxiliary storage pool (ASP)

control parameter are searched. User libraries are all libraries with names that do not begin with

the letter Q. For information about the libraries included, see *ALLUSR in Generic library names.

*CURLIB The thread’s current library is searched. When this value is used, the auxiliary storage pool (ASP)

device name in the auxiliary storage pool (ASP) control parameter must be an asterisk (*), if

specified.

*LIBL All libraries in the thread’s library list are searched. When this value is used, the auxiliary storage

pool (ASP) device name in the auxiliary storage pool (ASP) control parameter must be an asterisk

(*), if specified.

*USRLIBL All libraries in the user portion of the thread’s library list are searched. When this value is used,

the auxiliary storage pool (ASP) device name in the auxiliary storage pool (ASP) control parameter

must be an asterisk (*), if specified.

Object type

INPUT; CHAR(10)

 The types of objects to search for. You may either enter a specific object type, or a special value of

*ALL. For a complete list of the available object types, see External object types.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Authority control

INPUT; CHAR(*)

110 System i: Programming Object APIs

This parameter is used to specify the authority check that should be done for objects and

libraries. Detailed object information will only be returned for an object when you have the

specified authority to the object. If this parameter is omitted, the following occurs:

v *EXECUTE authority is checked for on the libraries

v Object name and object type information are always returned for each object. *ANY authority

(some authority other than *EXCLUDE) is checked for on the objects to return any detailed

information about the objects.

v Call level 0 is used

This parameter is useful to select objects to which you are authorized. To accomplish this, specify

a select or omit status value in the selection control parameter. The object name information in

format OBJL0100 is always returned for objects meeting the search criteria identified in the

required parameter group. (This assumes the thread has the required authority to the library.) The

information status field is set to an ’A’ when the thread does not have the object authority

specified.

The following example shows what you would specify to obtain a subset of all objects that you

have object management authority to.

The authority control parameter would contain:

v Length of authority control format: 48

v Call level: 1

v Displacement to object authorities: 28

v Number of object authorities: 1

v Displacement to library authorities: 38

v Number of library authorities: 1

v Object authorities: ’*OBJMGT ’

v Library authorities: ’*USE ’

The selection control parameter would contain:

v Length of selection control format: 21

v Select or omit status value: 1

v Displacement to statuses: 20

v Number of statuses: 1

v Statuses: ’A’

Because the program that calls the QUSLOBJ API adopts authority, the authority check should be

done at the call level previous to the current level (thus call level 1). With call level 1, the list

would not include any objects for which you have adopted authority by the current program.

The select or omit status value of 1 indicates that the returned list will omit the objects you do

not have object management authority to. This authority is specified in the object authorities field.

The format of this parameter is described in “Authority Control Format” on page 112.

Selection control

INPUT; CHAR(*)

 The criteria used to select or filter objects from the list based on specified information status

values.

This parameter is useful to reduce the total number of objects returned in the list. The list of

objects can be generated with only the specific status that you are interested in. For example, this

might be all damaged objects or all objects that the caller of the API is not authorized to. The list

of objects also can be generated with all objects except objects of a specific status.

The following example shows what you would specify to select all damaged objects:

Object APIs 111

v Length of selection control format: 22

v Select or omit status value: 0

v Displacement to statuses: 20

v Number of statuses: 2

v Statuses: DP

The format of this parameter is described in “Selection Control Format.”

Optional Parameter Group 3

Auxiliary storage pool (ASP) control

INPUT; CHAR(*)

 The information used to define the auxiliary storage pool (ASP) to search. See “Auxiliary Storage

Pool (ASP) Control Format” on page 113 for details.

Authority Control Format

The following shows the format of the authority control parameter. For detailed descriptions of the fields

in the table, see “Field Descriptions” on page 113.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of authority control format

4 4 BINARY(4) Call level

8 8 BINARY(4) Displacement to object authorities

12 C BINARY(4) Number of object authorities

16 10 BINARY(4) Displacement to library authorities

20 14 BINARY(4) Number of library authorities

24 18 BINARY(4) Reserved

 ARRAY(*) of

CHAR(10)

Object authorities

 ARRAY(*) of

CHAR(10)

Library authorities

Selection Control Format

The following shows the format of the selection control parameter. For detailed descriptions of the fields

in the table, see “Field Descriptions” on page 113.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of selection control format

4 4 BINARY(4) Select or omit status value

8 8 BINARY(4) Displacement to statuses

12 C BINARY(4) Number of statuses

16 10 BINARY(4) Reserved

 ARRAY(*) of

CHAR(1)

Statuses

112 System i: Programming Object APIs

Auxiliary Storage Pool (ASP) Control Format

The following shows the format of the auxiliary storage pool (ASP) control parameter. This parameter is

used to define the auxiliary storage pools (ASPs) to search. For detailed descriptions of the fields in the

table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of auxiliary storage pool (ASP) control format

4 4 CHAR(10) Auxiliary storage pool (ASP) device name

14 E CHAR(10) Auxiliary storage pool (ASP) search type

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of an auxiliary storage pool (ASP) device in which

storage is allocated for the library that contains the object. The ASP device must have a status of

’Available’. This field must be an asterisk (*) if optional parameter group 3 is specified when *CURLIB,

*LIBL, or *USRLIBL is specified as the library name in the object and library name parameter. If optional

parameter group 3 is omitted in cases where it is valid for the ASP device name to have a value other

than an asterisk (*), the thread’s library name space will be used. One of the following special values may

be specified:

 * The ASPs in the thread’s library name space.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32).

*CURASPGRP The ASPs in the current thread’s ASP group.

*ALLAVL All available ASPs. This includes the system ASP (ASP 1), all defined basic user ASPs (ASPs 2-32),

and all available primary and secondary ASPs (ASPs 33-255 with a status of ’Available’). The ASP

groups are searched in ascending alphabetical order by the primary ASP name. The system ASP

and all defined basic user ASPs are searched after the ASP groups. ASPs and libraries to which

you are not authorized are bypassed and no authority error messages are sent.

Auxiliary storage pool (ASP) search type. The type of the search when a specific auxiliary storage pool

(ASP) device name is specified for the ASP device name field. This field must be blanks when a special

value is specified for the auxiliary storage pool (ASP) device name field. One of the following values may

be specified:

 *ASP Only the single ASP named in the auxiliary storage pool (ASP) device name field will be searched.

*ASPGRP All ASPs in the auxiliary storage pool (ASP) group named in the auxiliary storage pool (ASP)

device name field will be searched. The device name must be the name of the primary auxiliary

storage pool (ASP) in the group.

Call level. The number of call levels to go back in the call stack to do the authority check. If optional

parameter group 2 is omitted, a call level of 0 is used.

For example, if the program that calls this API adopts authority, you probably would not want the

authority check to use the adopted authority. Therefore, the authority check should be done at the call

level previous to the current level. This field should then contain a 1. You can check the authority at

various call levels by specifying a number equivalent to the call level. For example, to check the authority

at the current call level, specify a 0. To check the authority at the previous call level, specify a 1.

This field must be greater than or equal to 0 and less than the number of programs in the call stack.

Object APIs 113

Displacement to library authorities. The displacement, in bytes, from the beginning of the authority

control format to the list of library authorities. The displacement value must be at least 28, which is past

the reserved portion of the format.

Displacement to object authorities. The displacement, in bytes, from the beginning of the authority

control format to the list of object authorities. The displacement value must be at least 28, which is past

the reserved portion of the format.

Displacement to statuses. The displacement, in bytes, from the beginning of the selection control format

to the list of statuses requested. The displacement value must be at least 20, which is past the reserved

portion of the format.

Length of authority control format. The total length of the authority control format. The length can be 0

bytes to indicate that no authority control information is provided. Otherwise, the minimum size is 48

bytes, which allows for one object and one library authority. An error is returned if the length specified is

less than the minimum and not 0.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool

(ASP) control format. The length can be 0 bytes to indicate that no auxiliary storage pool (ASP) control

information is provided. Otherwise, the length must be 24 bytes. An error is returned if the length

specified is not 24 or 0.

Length of selection control format. The total length of the selection control format. The length can be 0

bytes to indicate that no selection control information is provided. Otherwise, the minimum size is 21

bytes, which allows for one status value. An error is returned if the length specified is less than the

minimum and not 0.

Library authorities. The authority to check for libraries. The array can contain up to ten 10-character

fields. If optional parameter group 2 is omitted, *EXECUTE authority is checked for on the libraries.

The authority values can be specified in any combination. If *ALL, *CHANGE, or *USE is specified with

any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 10. This equals all of the specific object and

data authorities that can be listed separately.

The following identifies the type of authority you have to the library:

 *ALL All authority

*CHANGE Change authority

*USE Use authority

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

Number of library authorities. The number of authorities specified in the library authorities array. You

can specify 1 through 10 authorities.

114 System i: Programming Object APIs

Number of object authorities. The number of authorities specified in the object authorities array. You can

specify 1 through 11 authorities.

Number of statuses. The number of statuses specified in the statuses array. You can specify 1 through 5

statuses.

Object authorities. The authority to check for objects. The array can contain up to eleven 10-character

fields. If optional parameter group 2 is omitted, *ANY authority is checked for on the objects.

The authority values can be specified in any combination with the exception of the special value *ANY.

This must be specified as the only value. If *ALL, *CHANGE, *USE, or *AUTLMGT is specified with any

of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11, which equals all the specific object and

data authorities and *AUTLMGT authority.

The following identifies the type of authority you have to the object:

 *ALL All authority

*CHANGE Change authority

*USE Use authority

*AUTLMGT Authorization list management authority. (This value is valid only if the object type is *AUTL. It

will be ignored for other object types.)

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

*ANY Some authority other than *EXCLUDE. (If this value is specified, no other values can be specified.)

Reserved. This field is reserved. It must be set to hexadecimal zeros.

Select or omit status value. An indicator that determines whether objects are selected or omitted from

the list based on the statuses specified.

This field is useful in generating a list of objects with a certain information status, such as damaged or

partially damaged objects. It can also be used to generate a list of all objects except objects with a certain

information status, such as unauthorized objects.

Valid values are:

 0 Select on status value

1 Omit on status value

Statuses. The status of objects to select or omit from the list of objects generated. Valid values are all of

the possible values listed under the information status field (format OBJL0200). The special value * can be

used to select all objects with any information status field. If optional parameter group 2 is omitted, all

objects with any information status are selected.

Object APIs 115

Format of the Generated Lists

The object list consists of:

v A user area

v A generic header

v An input parameter section

v A list data section

For details about the user area and generic header, see User spaces. For details about the other items, see

the following sections. For a detailed description of each field in the information returned, see “Field

Descriptions” on page 120.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see Examples: APIs and exit programs.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) Object name specified

38 26 CHAR(10) Object library name specified

48 30 CHAR(10) Object type specified

58 3A CHAR(2) Reserved

60 3C BINARY(4) Error code bytes provided

64 40 BINARY(4) Length of authority control format

68 44 BINARY(4) Call level

72 48 BINARY(4) Displacement to object authorities

76 4C BINARY(4) Number of object authorities

80 50 BINARY(4) Displacement to library authorities

84 54 BINARY(4) Number of library authorities

88 58 BINARY(4) Length of selection control format

92 5C BINARY(4) Select or omit status value

96 60 BINARY(4) Displacement to statuses

100 64 BINARY(4) Number of statuses

104 68 BINARY(4) Length of auxiliary storage pool (ASP) control format

108 6C CHAR(10) Auxiliary storage pool (ASP) device name

118 76 CHAR(10) Auxiliary storage pool (ASP) search type

 ARRAY(*) of

CHAR(10)

Object authorities

 ARRAY(*) of

CHAR(10)

Library authorities

 ARRAY(*) of

CHAR(1)

Statuses

116 System i: Programming Object APIs

OBJL0100 List Data Section

The following information is returned in the list data section of the OBJL0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name used

10 A CHAR(10) Object library name used

20 14 CHAR(10) Object type used

OBJL0200 List Data Section

The following information is returned in the list data section of the OBJL0200 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJL0100 format

30 1E CHAR(1) Information status

31 1F CHAR(10) Extended object attribute

41 29 CHAR(50) Text description

91 5B CHAR(10) User-defined attribute

101 65 CHAR(7) Reserved

OBJL0300 List Data Section

The following information is returned in the list data section of the OBJL0300 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJL0200 format

108 6C BINARY(4) Object auxiliary storage pool (ASP) number

112 70 CHAR(10) Object owner

122 7A CHAR(2) Object domain

124 7C CHAR(8) Creation date and time

132 84 CHAR(8) Change date and time

140 8C CHAR(10) Storage

150 96 CHAR(1) Object compression status

151 97 CHAR(1) Allow change by program

152 98 CHAR(1) Changed by program

153 99 CHAR(10) Object auditing value

Object APIs 117

Offset

Type Field Dec Hex

163 A3 CHAR(1) Digitally signed

164 A4 CHAR(1) Digitally signed by system-trusted source

165 A5 CHAR(1) Digitally signed more than once

166 A6 CHAR(2) Reserved

168 A8 BINARY(4) Library auxiliary storage pool (ASP) number

OBJL0400 List Data Section

The following information is returned in the list data section of the OBJL0400 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJL0300 format

172 AC CHAR(10) Source file name

182 B6 CHAR(10) Source file library name

192 C0 CHAR(10) Source file member name

202 CA CHAR(13) Source file updated date and time

215 D7 CHAR(10) Creator’s user profile

225 E1 CHAR(8) System where object was created

233 E9 CHAR(9) System level

242 F2 CHAR(16) Compiler

258 102 CHAR(8) Object level

266 10A CHAR(1) User changed

267 10B CHAR(16) Licensed program

283 11B CHAR(10) Program temporary fix (PTF)

293 125 CHAR(10) Authorized program analysis report (APAR)

303 12F CHAR(10) Primary group

313 139 CHAR(2) Reserved

315 13B CHAR(1) Optimum space alignment

316 13C BINARY(4) Primary associated space size

320 140 CHAR(4) Reserved

OBJL0500 List Data Section

The following information is returned in the list data section of the OBJL0500 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJL0400 format

118 System i: Programming Object APIs

Offset

Type Field Dec Hex

324 144 CHAR(8) Object saved date and time

332 14C CHAR(8) Object restored date and time

340 154 BINARY(4) Saved size

344 158 BINARY(4) Saved size multiplier

348 15C BINARY(4) Save sequence number

352 160 CHAR(10) Save command

362 16A CHAR(71) Save volume ID

433 1B1 CHAR(10) Save device

443 1BB CHAR(10) Save file name

453 1C5 CHAR(10) Save file library name

463 1CF CHAR(17) Save label

480 1E0 CHAR(8) Save active date and time

488 1E8 CHAR(1) Journal status

489 1E9 CHAR(10) Journal name

499 1F3 CHAR(10) Journal library name

509 1FD CHAR(1) Journal images

510 1FE CHAR(1) Journal entries to be omitted

511 1FF CHAR(8) Journal start date and time

519 207 CHAR(13) Reserved

OBJL0600 List Data Section

The following information is returned in the list data section of the OBJL0600 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJL0500 format

532 214 CHAR(8) Last-used date and time

540 21C CHAR(8) Reset date and time

548 224 BINARY(4) Days-used count

552 228 CHAR(1) Usage information updated

553 229 CHAR(10) Object auxiliary storage pool (ASP) device name

563 233 CHAR(10) Library auxiliary storage pool (ASP) device name

573 23D CHAR(3) Reserved

OBJL0700 List Data Section

The following information is returned in the list data section of the OBJL0700 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 120.

Object APIs 119

Offset

Type Field Dec Hex

0 0 Everything from the OBJL0600 format

576 240 BINARY(4) Object size

580 244 BINARY(4) Object size multiplier

584 248 CHAR(1) Object overflowed auxiliary storage pool (ASP) indicator

585 249 CHAR(10) Object auxiliary storage pool (ASP) group name

595 253 CHAR(10) Library auxiliary storage pool (ASP) group name

605 25D CHAR(10) Starting journal receiver name for apply

615 267 CHAR(10) Starting journal receiver library name

625 271 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) device

name

635 27B CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) group

name

645 285 CHAR(3) Reserved

Field Descriptions

Allow change by program. A 1-character variable that is used to return the allow change by program

flag. A 1 is returned if the object can be changed with the Change Object Description (QLICOBJD) API. A

0 is returned if the object cannot be changed with the API.

Authorized program analysis report (APAR). The identifier of the authorized program analysis report

(APAR) that caused this object to be replaced. The field is blank if the object did not change because of

an APAR.

Auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device to be

searched for the library, as specified in the call to the API.

Auxiliary storage pool (ASP) search type. The type of the auxiliary storage pool (ASP) search, as

specified in the call to the API.

Call level. The number of call levels to go back in the call stack to do the authority check. If optional

parameter group 2 is omitted, a call level of 0 is used.

For example, if the program that calls this API adopts authority, you would probably not want the

authority check to use the adopted authority. Therefore, the authority check should be done at the call

level previous to the current level. This field should then contain a 1. You can check the authority at

various call levels by specifying a number equivalent to the call level. For example, to check the authority

at the current call level, specify a 0. To check the authority at the previous call level, specify a 1.

This field must be greater than or equal to 0 and less than the number of programs in the call stack.

Changed by program. A 1-character variable that is used to return the changed by program flag. A 1 is

returned if the object has been changed with the QLICOBJD API. A 0 is returned if the object has not

been changed by the API.

Change date and time. The time at which the object was last changed, in system time-stamp format.

Compiler. The licensed program identifier, version number, release level, and modification level of the

compiler. The field has a pppppppVvvRrrMmm format where:

120 System i: Programming Object APIs

ppppppp The licensed program identifier.

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

The field is blank if you do not compile the program.

Creation date and time. The time at which the object was created, in system time-stamp format. See

Convert Date and Time Format (QWCCVTDT) API for more information about using this timestamp

format.

Creator’s user profile. The name of the user that created the object.

Days-used count. The number of days the object was used. If the object does not have a last-used date,

the count is 0.

Digitally signed. A 1-character variable that indicates whether the object has a digital signature.

 0 The object does not have a digital signature.

1 The object has a digital signature.

Digitally signed by system-trusted source. A 1-character variable indicates whether the object is signed

by a source that is trusted by the system.

 0 None of the object signatures came from a source that is trusted by the system.

1 The object is signed by a source that is trusted by the system. If the object has multiple signatures, at least one

of the signatures came from a source that is trusted by the system.

Digitally signed more than once. A 1-character variable that indicates whether the object has more than

one digital signature.

 0 The object has only one digital signature or does not have a digital signature. Refer to the digitally signed

variable to determine whether the object has a digital signature.

1 The object has more than one digital signature. Refer to the digitally signed by system-trusted source variable

to determine whether the object has a digital signature from a source trusted by the system.

Displacement to library authorities. The displacement, in bytes, from the beginning of this input

parameter structure to the list of library authorities, as specified in the call to the API.

Displacement to object authorities. The displacement, in bytes, from the beginning of this input

parameter structure to the list of object authorities, as specified in the call to the API.

Displacement to statuses. The displacement, in bytes, from the beginning of this input parameter

structure to the list of statuses requested, as specified in the call to the API.

Error code bytes provided. The length of the area that the calling application provides for the error code,

in bytes.

Extended object attribute. The extended attribute of the object, such as a program or file type. Extended

attributes further describe the object. For example, an object type of *PGM may have a value of RPG

(RPG program) or CLP (CL program), and an object type of *FILE may have a value of PF (physical file),

LF (logical file), DSPF (display file), SAVF (save file), and so on.

Object APIs 121

qwccvtdt.htm

Format name. The format of the returned output.

Information status. Whether or not the QUSLOBJ API returns the requested information for this object.

Possible values are:

 blank The requested information is returned. No errors occurred.

A No information is returned. The thread that called this API needs either the authority specified in the

object authorities field or *ANY authority (the default) to the object.

D The requested information is returned but may be incomplete. The object is damaged and should be

deleted and created again as soon as possible.

L No information is returned because the object is locked.

P The requested information is returned. However, the object is partially damaged. In most instances, to

recover from partial object damage, you delete the damaged object and either restore a saved copy or

create the object again. For some damaged objects, special recovery procedures are possible. See the

Recovering your system topic collection for more information about damaged objects.

If two or more conditions occur that include no authorization (A) to the object, the status is set to A. If the

object is damaged (D) and locked (L), or if the object is partially damaged (P) and locked, the status is set

to L.

If the value of this field is A or L, your application should not use the other fields for the object. Only the

object name, library, and type fields contain accurate data.

Journal entries to be omitted. The journal entries to be omitted. The field is 1 if open and close operations

do not generate open and close journal entries. The field is 0 if no entries are omitted. This field is blank if

the object has never been journaled.

Journal images. The type of images that are written to the journal receiver for updates to the object. The

field is 0 if only after images are generated for changes to the object. The field is 1 if both before and after

images are generated for changes to the object. This field is blank if the object has never been journaled.

Journal library name. The name of the library that contains the journal. This field is blank if the object

has never been journaled.

Journal name. The name of the current or last journal. This field is blank if the object has never been

journaled.

Journal start date and time. The time at which journaling for the object was last started, in system

time-stamp format. This field contains hexadecimal zeros if the object has never been journaled.

Journal status. The 1-character variable that returns the current journaling status of an object. The value

is 1 if the object currently is being journaled; the value is 0 if the object currently is not being journaled.

Last-used date and time. The date and time at which the object was last used, in system time-stamp

format. If the object has no last-used date, the field contains hexadecimal zeros.

Length of authority control format. The total length of the authority control format, as specified in the

call to the API.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool

(ASP) control format, as specified in the call to the API.

Length of selection control format. The total length of the selection control format, as specified in the

call to the API.

122 System i: Programming Object APIs

Library authorities. The authority to check for libraries. The array can contain up to ten 10-character

fields. If optional parameter group 2 is omitted, *EXECUTE authority is checked for on the libraries.

The authority values can be specified in any combination. If *ALL, *CHANGE, or *USE is specified with

any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11. This equals all of the specific object and

data authorities that can be listed separately.

The following identifies the type of authority you have to the library:

 *ALL All authority

*CHANGE Change authority

*USE Use authority

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

Library auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device

where storage is allocated for the library that contains the object. The following special values may be

returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) group name. The name of the auxiliary storage pool (ASP) group

where storage is allocated for the library that contains the object. The name of the ASP group is the name

of the primary ASP within the ASP group. The value returned may be the same as the value returned for

the library auxiliary storage pool (ASP) device name field. The following special values may be returned:

 *N The name of the ASP group cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where

storage is allocated for the library that contains the object. Valid values are:

 1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Licensed program. The name, release level, and modification level of the licensed program if the

retrieved object is part of a licensed program. The 7-character name starts in character position 1, the

version number starts in position 8, the release level starts in position 11, and the modification level starts

in position 14. The field is blank if the retrieved object is not a part of a licensed program.

Number of library authorities. The number of authorities specified in the library authorities array. You

can specify 1 through 10 authorities.

Object APIs 123

Number of object authorities. The number of authorities specified in the object authorities array. You can

specify 1 through 11 authorities.

Number of statuses. The number of statuses specified in the statuses array. You can specify 1 through 5

statuses.

Object auditing value. A 10-character variable that is used to return the type of auditing for an object.

The valid values are:

 *NONE No auditing occurs for this object when it is read or changed regardless of the user who is

accessing the object.

*USRPRF Audit this object only if the user accessing the object is being audited. The user profile for the

thread is tested to determine if auditing should be done for this object. The user profile can

specify if only change access is audited or if both read and change accesses are audited for this

object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is defined as a read or change

operation.

*NOTAVL The auditing value is not available because you do not have either all object (*ALLOBJ) or audit

(*AUDIT) special authority.

Object authorities. The authority to check for objects. The array can contain up to eleven 10-character

fields. If optional parameter group 2 is omitted, *ANY authority is checked for on the objects.

The authority values can be specified in any combination with the exception of the special value *ANY.

This must be specified as the only value. If *ALL, *CHANGE, *USE, or *AUTLMGT is specified with any

of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11, which equals all the specific object and

data authorities and *AUTLMGT authority.

The following identifies the type of authority you have to the object:

 *ALL All authority

*CHANGE Change authority

*USE Use authority

*AUTLMGT Authorization list management authority. (This value is valid only if the object type is *AUTL. It

will be ignored for other object types.)

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

*ANY Any authority other than *EXCLUDE. (If this value is specified, no other values can be specified.)

Object auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device

where storage is allocated for the object. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

124 System i: Programming Object APIs

Object auxiliary storage pool (ASP) group name. The name of the auxiliary storage pool (ASP) group

where storage is allocated for the object. The name of the ASP group is the name of the primary ASP

within the ASP group. The value returned may be the same as the value returned for the object auxiliary

storage pool (ASP) device name field. The following special values may be returned:

 *N The name of the ASP group cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where

storage is allocated for the object. Valid values are:

 1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object compression status. Whether the object is compressed or decompressed. The status is returned in

a 1-character variable with one of these values:

 Y Compressed.

N Permanently decompressed and compressible.

X Permanently decompressed and not compressible.

T Temporarily decompressed.

F Saved with storage freed; compression status cannot be determined.

Temporarily decompressed objects exist in both decompressed and compressed form. Permanently

decompressed objects exist in decompressed form only. The system handles some decompression

automatically, depending on the type of object, the operation performed on it, and its frequency of use.

For an overview of object compression and decompression, see the Object compression or decompression

topic. For details about how to explicitly compress and decompress objects, see the online help for these

commands: Compress Object (CPROBJ), Decompress Object (DCPOBJ), and Reclaim Temporary Storage

(RCLTMPSTG).

Object domain. The domain that contains the object. The value is *U if the object is in the user domain,

or *S if the object is in the system domain.

Object level. The object control level for the created object.

Object library name specified. The name of the object library, as specified in the call to the API.

Object library name used. The name of the library that contains the object.

Object name specified. The name of the object, as specified in the call to the API.

Object name used. The name of the object.

Object overflowed auxiliary storage pool (ASP) indicator. The 1-character variable that returns the object

overflowed auxiliary storage pool (ASP) indicator. The value is 1 if the object overflowed the ASP in

which it resides; the value is 0 if the object has not overflowed the ASP. For objects in the system ASP

(ASP 1) or in a primary or secondary ASP (ASPs 33-255), a 0 is always returned because it is not possible

for an object that resides in the system ASP or in a primary or secondary ASP to overflow its ASP.

Object owner. The name of the object owner’s user profile.

Object APIs 125

Object restored date and time. The time at which the object was restored, in system time-stamp format.

If the object has never been restored, the field contains hexadecimal zeros.

Object saved date and time. The time at which the object was saved, in system time-stamp format. If the

object has never been saved, the field contains hexadecimal zeros.

Object size. The size of the object in units of the object size multiplier. The object size in bytes is equal to

or smaller than the object size in units multiplied by the object size multiplier. The object size includes

the size returned in the primary associated space size field (format OBJL0400).

Object size multiplier. The value to multiply the object size by to get the object size in bytes.

The following values can be returned:

 1 The object size is smaller than 1 000 000 000 bytes.

1024 The object size is between 1 000 000 000 and 1 023 999 998 976 bytes.

1048576 The object size is larger than 1 023 999 998 976 bytes.

Object type specified. The type of the object, as specified in the call to the API.

Object type used. The type of the object. For a list of all the avail information.

Optimum space alignment. A 1-character variable that indicates whether the space associated with the

object has been optimally aligned. Optimum alignment may allow for better performance of applications

that use the object. The possible values are as follows:

 0 The space associated with the object has not been optimally aligned.

1 The space associated with the object has been optimally aligned.

2 There is not a space associated with the object.

Primary associated space size. The size, in bytes, of the primary associated space used by the object. If

the object does not have an associated space, the size is 0.

Primary group. The name of the user who is the primary group for the object. If no primary group exists

for the object, this field contains a value of *NONE.

Program temporary fix (PTF). The number of the program temporary fix (PTF) number that caused this

object to be replaced. This field is blank if the object was not changed because of a PTF.

Reserved. An unused field. It contains hexadecimal zeros.

Reset date and time. The date the days-used count was last reset to zero, in system time-stamp format. If

the days-used count has never been reset, the field contains hexadecimal zeros.

Save active date and time. The date and time the object was last saved when the SAVACT(*LIB,

*SYSDFN, or *YES) save operation was specified, in system time-stamp format. This parameter is found

on the Save Library (SAVLIB), Save Object (SAVOBJ), Save Changed Object (SAVCHGOBJ), and Save

Document Library Object (SAVDLO) CL commands. If the object has never been saved or if

SAVACT(*NO) was specified on the last save operation for the object, the field contains hexadecimal

zeros.

Save command. The command used to save the object. The field is blank if the object was not saved.

126 System i: Programming Object APIs

Save device. The type of device to which the object was last saved. The field is *SAVF if the last save

operation was to a save file. The field is *DKT if the last save operation was to diskette. The field is *TAP

if the last save operation was to tape. The field is *OPT if the last save operation was to optical. The field

is blank if the object was not saved.

Save file library name. The name of the library that contains the save file if the object was saved to a

save file. The field is blank if the object was not saved to a save file.

Save file name. The name of the save file if the object was saved to a save file. The field is blank if the

object was not saved to a save file.

Save label. The file label used when the object was saved. The variable is blank if the object was not

saved to tape, diskette, or optical. The value of the variable corresponds to the value specified for the

LABEL of OPTFILE parameter on the command used to save the object.

Save sequence number. The tape sequence number assigned when the object was saved on tape. If the

object was not saved to tape, the field contains zeros.

Save volume ID. The tape, diskette, or optical volumes that are used for saving the object. The variable

returns a maximum of 10 six-character volumes. The volume IDs begin in character positions 1, 8, 15, 22,

29, 36, 43, 50, 57, and 64. Each volume ID entry is separated by a single character. If the object was saved

in parallel format, the separator character contains a 2 before the first volume in the second media file, a

3 before the third media file, and so on, up to a 0 before the tenth media file. Otherwise, the separator

characters are blank. If more than 10 volumes are used and the object was saved in serial format, 1 is

returned in the 71st character of the variable. If the object was saved in parallel format, a 2 is returned in

the 71st character of the variable. Otherwise, the 71st character is blank. The field is blank if the object

was last saved to a save file or if it was never saved.

Saved size. The size of the object in units of the saved size multiplier at the time of the last save

operation. The saved size in bytes is equal to or smaller than the saved size in units multiplied by the

saved size multiplier. The saved size includes the size of the primary associated space, if one existed. The

field contains zeros if the object was not saved.

Saved size multiplier. The value to multiply the saved size by to get the saved size in bytes.

The following values can be returned:

 1 The saved size is smaller than 1 000 000 000 bytes.

1024 The saved size is between 1 000 000 000 and 1 023 999 998 976 bytes.

1048576 The saved size is larger than 1 023 999 998 976 bytes.

Select or omit status value. An indicator that determines whether objects are selected or omitted from

the list based on the statuses specified.

This field is useful in generating a list of objects with a certain information status, such as damaged or

partially damaged objects. It can also be used to generate a list of all objects except objects with a certain

information status, such as unauthorized objects.

 0 Select on status value

1 Omit on status value

Source file library name. The name of the library that contains the source file used to create the object.

The field is blank if no source file created the object.

Object APIs 127

Source file member name. The name of the member in the source file. The field is blank if no source file

created the object.

Source file name. The name of the source file used to create the object. The field is blank if no source file

created the object.

Source file updated date and time. The date and time the member in the source file was last updated.

This field is in the CYYMMDDHHMMSS format where:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

The field is blank if no source file created the object.

Starting journal receiver library name. The name of the library that contains the starting journal receiver

for apply. This field is blank if the object has never been journaled.

Starting journal receiver library auxiliary storage pool (ASP) device name. The name of the auxiliary

storage pool (ASP) device where storage is allocated for the library that contains the starting journal

receiver for apply. This field is blank if the object has never been journaled. The following special values

may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver library auxiliary storage pool (ASP) group name. The name of the auxiliary

storage pool (ASP) group where storage is allocated for the library that contains the starting journal

receiver. The name of the ASP group is the name of the primary ASP within the ASP group. The value

returned may be the same as the value returned for the journal receiver library auxiliary storage pool

(ASP) device name field. This field is blank if the object has never been journaled. The following special

values may be returned:

 *N The name of the ASP group cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver name for apply. The name of the oldest journal receiver needed to successfully

use the Apply Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG)

command. This field is blank if the object has never been journaled.

For a file object, the journal receiver will contain the entry representing the start-of-the-save operation.

However, if there are members within the file that contain partial transactions, then those members may

require an earlier journal receiver. Use the Display File Description (DSPFD) command to determine the

partial transaction state of the members of the file.

Statuses. The status of objects to select or omit from the list of objects generated. Valid values are all of

the possible values listed under the information status field (format OBJL0200). The special value * can be

used to select all objects with any information status field. If optional parameter group 2 is omitted, all

objects with any information status are selected.

128 System i: Programming Object APIs

Storage. The storage status of the object data. *FREE indicates the object data is freed and the object is

suspended. *KEEP indicates the object data is not freed and the object is not suspended.

System level. The level of the operating system when the object was created. The field has a

VvvRrrMmm format where:

 Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

System where object was created. The name of the system on which the object was created.

Text description. The text description of the object. The field is blank if no text description is specified.

Usage information updated. Whether the object usage information is updated for this object type. The

indicator is returned as Y (Yes) or N (No).

User changed. Whether the user program was changed. A character 1 is returned if the user changed the

object. If the object was not changed by the user, the field is character 0.

User-defined attribute. Further defines an object type. This field is set by the user while using the

QLICOBJD API.

User space library name. The library that contains the user space, as specified in the call to the API.

User space name. The name of the user space.

Error Messages

 Message ID Error Message Text

CPFB8ED E Device description &1 not correct for operation.

CPF21AA E Number of statuses must be between 1 and 5.

CPF21AB E Status value &1 not valid.

CPF21AC E Length or displacement value &1 not valid.

CPF21A7 E Authority value &1 not valid.

CPF21A8 E Must specify *ANY as only authority value.

CPF21A9 E Select or omit value &1 not valid.

CPF2173 E Value for ASPDEV not valid with special value for library.

CPF218C E &1 not a primary or secondary ASP.

CPF218D E &1 not a primary ASP when *ASPGRP specified.

CPF22F7 E Number of authorities must be between 1 and &1.

CPF22F9 E Call level &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF980B E Object &1 in library &2 not available.

CPF9801 E Object &2 in library &3 not found.

Object APIs 129

Message ID Error Message Text

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Materialize Context (QusMaterializeContext) API

 Required Parameter Group:

 1 Receiver I/O PTR(SPP)

2 Context Input PTR(SYP)

3 Materialize options Input Char(*)

 Default Public Authority: *USE
 Service Program: QUSMIAPI
 Threadsafe: No

The term context in this API is synonymous with the i5/OS
®

term library.

The Materialize Context (QusMaterializeContext) API returns either the type and subtype of the object or

system pointers, based on what you specify for the materialize options parameter. The API returns the

information for all or for a selected set of objects that are contained by the context. This information is

returned to a receiver variable. If the context is null, the machine context (the QSYS library) is returned.

This API provides the function of the MATCTX MI instruction on all security levels of i5/OS. See the

MATCTX instruction in the i5/OS Machine Interface topic collection for the documentation of this API.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

MCHxxxx E See i5/OS Machine Interface for exact MCH messages that can be signaled.

API introduced: V3R7

 Top | “Object APIs,” on page 1 | APIs by category

130 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Move Folder to ASP (QHSMMOVF) API

 Required Parameter Group:

 1 Folder name Input Char(12)

2 Target auxiliary storage pool (ASP) Input Binary(4)

3 Error code I/O Char(*)

 Default Public Authority: *USE

The Move Folder to ASP (QHSMMOVF) API moves a root folder and its contents from its existing

auxiliary storage pool (ASP) to the specified target ASP through a save and restore process. The API,

however, will retain private authorities to the objects that would normally be lost with a save and restore

operation.

Restrictions

The Move Folder to ASP (QHSMMOVF) API has the following restrictions:

v The folder must be a root folder and will be moved as such.

v The folder and its contents must not be in use by other jobs.

v Folders that were restored using the Restore Licensed Program (RSTLICPGM) should not be moved.

v After the root folder has been moved, the following parameters are changed:

– The date last used will be set to blank.

– The change date and time will be set to the current date and time.

– The days used count will be set to zero.

– The days used count reset will be set to blank.

– The save date/time and restore date/time will be updated.
v The target ASP must have enough space for the folder and its objects in order for the API to perform

the move action.

v The target ASP must be either the system ASP, a library-type ASP, or an empty ASP.

v The user must be enrolled in the system distribution directory.

v Access codes are the responsibility of the user and will be lost.

v A root folder that contains documents checked out or saved with STG(*FREE) will not be moved.

v A root folder that contains more than 99 subfolders will not be moved.

Authorities and Locks

For detailed information about locks that are applied to objects during save operations, see the Backing

up your system topic collection.

To prevent access to other jobs, the folder is renamed to QHSMFLR.xxx, where xxx is a numeric

increment to allow multiple concurrent move operations.

The user profile must have *OBJALTER authority to the folder and its objects if it does not have *ALLOBJ

authority.

See Authority required for objects used by commands in the Security reference topic collection for

detailed information about object authorities required when you save objects.

Required Parameter Group

Folder name

INPUT; CHAR(12)

Object APIs 131

The name of the folder to be moved to the specified auxiliary storage pool (ASP).

Target auxiliary storage pool (ASP)

INPUT; BINARY(4)

 The number of the auxiliary storage pool (ASP) to which the folder is to be moved. You can use

one of the following values for the ASP number:

 1-16 The number that was assigned to the ASP at creation time. ASP 1 is the system ASP. This ASP must be

different from the ASP where the folder exists.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF3C90 E Literal value cannot be changed.

CPF8A00 E All CPF8Axx messages could be signaled. xx is from 01 to FF.

CPF9000 E All CPF90xx messages could be signaled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB78B E Errors encountered while moving or migrating folder &1.

CPFB781 E Not authorized to folder &1.

CPFB783 E Folder &1 cannot be moved or migrated into an object-based ASP &2.

CPFB784 E Target ASP &1 is not valid for the move or migrate operation.

CPFB786 E Insufficient disk capacity in ASP &1 for specified objects.

CPFB79E E Auxiliary storage pool &1 does not exist.

CPFB790 E Move or migrate of folder &1 failed.

CPFB799 E Unexpected condition with &1 API. Reason & 6.

API introduced: V4R3

 Top | “Object APIs,” on page 1 | APIs by category

Move Library to ASP (QHSMMOVL) API

 Required Parameter Group:

 1 Library name Input Char(10)

2 Target auxiliary storage pool (ASP) number Input Binary(4)

3 Check dependencies Input Char(10)

4 Error Code I/O Char(*)

 Optional Parameter Group 1:

 5 Target auxiliary storage pool (ASP) device name Input Char(10)

6 Source auxiliary storage pool (ASP) number Input Binary(4)

7 Source auxiliary storage pool (ASP) device name Input Char(10)

 Default Public Authority: *USE
 Threadsafe: No

132 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

The Move Library to ASP (QHSMMOVL) API moves a library and its contents from its existing auxiliary

storage pool (ASP) to the specified target ASP through a save and restore operation. The API preserves

private authorities to the objects that would normally be lost with a save and restore operation.

Program (*PGM) objects in the library will be placed in library QRPLOBJ (or library QRPLxxxxx if the

library is in a primary or secondary ASP (where ’xxxxx’ is the ASP number of the primary ASP of the

ASP group)) and a copy of each *PGM object will be moved with the library to the target ASP.

After a library has been moved, the following attributes are changed for every object in the library and

the library.

v The date last used will be set to blank.

v The change date and time will be set to the current date and time.

v The days used count will be set to zero.

v The date use count reset will be set to blank.

v The restore date and time will be set to the current date and time.

Restrictions

v Data queue entries are not moved and will be lost.

v The QSYSWRK subsystem must be active.

v A library cannot be moved in the following cases:

– The library is considered a system library. The restricted libraries are:

- Any library with a name that begins with the letter ’Q’.

- Any library with a name that begins with the symbol ’#’ that is not considered a user library and

the target ASP is not a basic user ASP.

- Libraries SYSIBM,

SYSIBMADM, SYSPROC, and SYSTOOLS.

- Library SYSIBxxxxx (where xxxxx is the number of a primary ASP).
– The library cannot be renamed. See the Rename Object (RNMOBJ) command for the restrictions on

renaming a library.

– The library contains *JRN or *JRNRCV objects, objects that are journaled

or the library itself is

journaled.

– The library contains files with database dependencies outside the library.

– The library is in the library list of the current thread.

– The library is in the library list of any primary thread that is active on the system when the

QLIBLCKLVL system value is set to lock libraries in the library list.

– The library contains an allocated job queue or output queue.

– The target ASP does not have enough space for the library and its objects.

– The target ASP is not either the system ASP (ASP 1),

a basic user ASP (ASPs 2-32), or a primary

or secondary ASP in the range of 33-255. A library object (*LIB) must be able to be created into the

target ASP, which means that the ASP cannot be a UDFS ASP and it cannot contain a journal,

journal receiver or save file object where the object’s ASP is a basic user ASP and the object’s library

is in the system ASP.

–

When the target ASP is a primary or secondary ASP, the library contains a job queue object

(*JOBQ).

– When the target ASP is a primary or secondary ASP, the library must contain only object types that

can reside in an ASP. For a list of supported and unsupported object types in a primary or

secondary ASP, see Independent disk pool examples.

Object APIs 133

Authorities and Locks

Auxiliary Storage Pool (ASP) Device Authority

*USE authority for each auxiliary storage pool (ASP) device in the ASP group when a specific

ASP device name is specified for the source or target auxiliary storage pool (ASP) device name or

when a value greater than 32 is specified for the source or target auxiliary storage pool (ASP)

number.

Object Authority

See Authority required for objects used by commands in the Security reference topic collection for

detailed information about object authorities required when you save objects.

Library Authority

*OBJALTER

Object Lock

See the Backing up your system topic collection for detailed information about locks that are

applied to objects during save operations.

Library Lock

*EXCL

 To prevent access to other jobs, the library is renamed to QHSMLIBxxx where xxx is a numeric

increment to allow multiple concurrent move operations.

Required Parameter Group

Library name

INPUT; CHAR(10)

 The name of the library to be moved to the specified auxiliary storage pool (ASP).

Target auxiliary storage pool (ASP) number

INPUT; BINARY(4)

 The number of the auxiliary storage pool (ASP) to which the library is to be moved. The

following values can be used for the ASP number:

 1-255 The number that was assigned to the ASP at creation time. ASP 1 is the system ASP. ASP numbers

2-32 are basic user ASPs.

ASPs specified in the range of 33-255 must be either primary or

secondary ASPs and have a status of ’Available’.

This ASP must be different from the ASP

where the library exists.

-1 The ASP value is determined from the target auxiliary storage pool (ASP) device name parameter.

Check dependencies

INPUT; CHAR(10)

 Identifies whether object and journal dependencies should be checked and whether the API is to

return after the dependency checking. When object dependencies are checked, the API validates

that every object type in the library can exist in the target ASP. When journal dependencies are

checked, the API validates that there are no *JRN or *JRNRCV objects, no journaled objects in the

library

and the library itself is not journaled.

Database dependencies are always checked to

validate that there are no database dependencies outside the library. You can use one of the

following values:

 *YES The API will check for object dependencies, database dependencies outside the library, and for

journal dependencies. An exception is signaled in case any of the conditions are found.

134 System i: Programming Object APIs

*NO The API bypasses the validation for object and journal dependencies. The database dependencies

outside of the library are checked. This value could be used to save on processing time if the user

knows that dependencies do not exist. However, the API will end abnormally during the move

operation if dependency conditions are encountered.

*VALIDATE The same validation is done as when ″*YES″ is specified. The library is not moved to the target

ASP. Completion message CPCB79F will be sent to the caller of the API indicating that the library

can be moved to the selected ASP. This option is best used for planning purposes to determine

which libraries can be moved to a specific ASP.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Optional Parameter Group 1

Target auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

 The name of the auxiliary storage pool (ASP) device from which storage is allocated for the

library after the move. The ASP device must have a status of ’Available’. If this parameter is

omitted, the target auxiliary storage pool (ASP) number parameter will be used. This parameter

must be *TGTASP if specified when the target auxiliary storage pool (ASP) number parameter

has a value other than -1. The target ASP device must be different from the ASP device where the

library currently exists.

One of the following special values may be specified:

 *TGTASP The ASP is determined from the target auxiliary storage pool (ASP) number parameter.

*CURGRPPRI If the current thread has an ASP group, the storage for the library is allocated from the the

primary ASP of the group.

*SYSTEM The system ASP (ASP 1).

Source auxiliary storage pool (ASP) number

INPUT; BINARY(4)

 The number of the auxiliary storage pool (ASP) from which the library is to be moved. If this

parameter and the source auxiliary storage pool (ASP) device name parameter are both omitted,

the library name space for the current thread will be searched for the library.

The following values for the ASP number can be used:

 1-255 The number that was assigned to the ASP at creation time. ASP 1 is the system ASP. ASP numbers 2-32

are basic user ASPs.

ASPs specified in the range of 33-255 must be either primary or secondary ASPs

and have a status of ’Available’.

-1 The ASP value is determined from the source auxiliary storage pool (ASP) device name parameter.

Source auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

 The name of the auxiliary storage pool (ASP) device from which storage is allocated for the

library to be moved. The ASP device must have a status of ’Available’. This parameter must be

*ASP if specified when the source auxiliary storage pool (ASP) number parameter has a value

other than -1. If this parameter and the source auxiliary storage pool (ASP) number parameter are

both omitted, the library name space for the current thread will be searched for the library.

Object APIs 135

One of the following special values may be specified:

 *ASP The ASP to be searched is determined from the source auxiliary storage pool (ASP) number

parameter.

* The ASPs in the library name space for the current thread will be searched for the library.

*CURASPGRP The ASPs in the ASP group for the current thread will be searched for the library.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32) will be searched for the library.

Error Messages

 Message ID Error Message Text

CPFB78A E Job queue &1 in library &2 is attached to subsystem &3.

CPFB78C E Library &1 not moved or migrated.

CPFB78D E Library &1 not moved or migrated.

CPFB78E E Move or migrate of library &1 failed.

CPFB78F E Move or migrate of library &1 failed

CPFB780 E Not authorized to library &1.

CPFB782 E Library &1 cannot be moved or migrated into an object-based ASP &2.

CPFB784 E Target ASP &1 is not valid for the move or migrate operation.

CPFB785 E Library &1 contains objects not valid for selected ASP.

CPFB786 E Insufficient disk capacity in ASP &1 for specified objects.

CPFB787 E Library &1 has journal dependencies.

CPFB788 E Library &1 has database dependencies.

CPFB789 E Output queue &1 in library &2 is attached to writer &3.

CPFB79E E Auxiliary storage pool &1 does not exist.

CPFB791 E Cannot access object &1 in library &2 type &3.

CPFB792 E An error was encountered while moving or migrating library &1.

CPFB793 E Move or migrate of job queue entries failed.

CPFB794 E Move of output queue entries failed.

CPFB795 E Library &1 cannot be allocated.

CPFB799 E Unexpected condition with &1 API. Reason &6.

CPFB8ED E Device description &1 not correct for operation.

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF2166 E Library name &1 not valid.

CPF218C E &1 not a primary or secondary ASP.

CPF24B4 E Severe error while addressing parameter list.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9810 E Library &1 not found.

CPF9814 E Device &1 not found.

CPF9825 E Not authorized to device &1.

CPF9833 E *CURASPGRP or *CURGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

 Top | “Object APIs,” on page 1 | APIs by category

Open List of Objects (QGYOLOBJ) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

136 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

3 List Information Output Char(80)

4 Number of records to return Input Binary(4)

5 Sort information Input Char(*)

6 Object and library name Input Char(20)

7 Object type Input Char(10)

8 Authority control Input Char(*)

9 Selection control Input Char(*)

10 Number of keyed fields to return Input Binary(4)

11 Key of fields to return Input Array(*) of Binary(4)

12 Error Code I/O Char(*)

 Optional Parameter Group 1:

 13 Job identification information Input Char(*)

14 Format of job identification information Input Char(8)

 Optional Parameter Group 2:

 15 Auxiliary storage pool (ASP) control Input Char(*)

 Default Public Authority: *USE
 Threadsafe: No

The Open List of Objects (QGYOLOBJ) API lets you generate a list of object names and descriptive

information based on specified selection parameters. The QGYOLOBJ API places the list into a receiver

variable. You can access additional records by using the Get List Entries (QGYGTLE) API. On successful

completion of this API, a handle is returned in the list information parameter. You may use this handle

on subsequent calls to the following APIs:

v Get List Entries (QGYGTLE)

v Find Entry Number in List (QGYFNDE)

v Close List (QGYCLST)

You can use the QGYOLOBJ API to:

v Open a list of objects in a library

v Open a list of objects of only one type

v Open a list of objects in another thread’s library list

v Open a list of objects in the QTEMP library for another job

v Write an application program to move programs from the QRPLOBJ library back to their original

location

v Provide backup analysis based on when the object was last saved or last updated

v Provide source member and object analysis from source member information to verify that the current

source was used to create the specified object

The records returned by QGYOLOBJ include an information status field that describes the completeness

and validity of the information. Be sure to check the information status field before using any other

information returned.

Note: The QTEMP library and the system portion of the library list could be different between the main

job and the server job when the list is being built asynchronously. If this is a problem, then request that

the list be built synchronously.

For more information, see the Process Open List APIs.

Object APIs 137

misc1b.htm

Authorities and Locks

If the user is authorized to the library, some object information is always returned for the objects meeting

the search criteria identified in the required parameter group. To return any of the data identified in the

key fields, the user must be authorized to the objects. The information status field in the receiver variable

is set to ’A’ when the user is not authorized to the objects. A value of *NOTAVL will be returned for the

object auditing information unless you have either all object (*ALLOBJ) or audit (*AUDIT) special

authority.

Auxiliary Storage Pool (ASP) Device Authority

*EXECUTE when a specific auxiliary storage pool (ASP) device name is specified for the auxiliary

storage pool (ASP) control parameter.

Object Authority

Authority specified in the Authority control parameter

Object Library Authority

Authority specified in the Authority control parameter

Job Authority

When optional parameter group 1 is specified, the API must be called from within the thread for

which the object list is being retrieved, or the caller of the API must be running under a user

profile that is the same as the job user identity of the job for which the object list is being

retrieved. Otherwise, the caller of the API must be running under a user profile that has job

control (*JOBCTL) special authority.

 The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work management topic collection.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable used to return the number of records requested (given in the number of records to

return parameter) of object information. For details about the structure of the receiver variable,

see “Format of Receiver Variable” on page 148.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 Information about the list of objects that was opened. For a description of the layout of this

parameter, see Open list information format.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable after filtering and sorting has

been done. Possible values follow:

 -1 All records are built synchronously in the list.

0 All records are built asynchronously in the list.

If a positive number of records is specified at least that many are built synchronously (in order to

return those immediately to the caller of this API) and the remainder are built asynchronously by

a server job.

138 System i: Programming Object APIs

Sort information

INPUT; CHAR(*)

 Information about which fields within the record structure to sort. For the layout of this structure,

see “Sort Information Format” on page 142.

Object and library name

INPUT; CHAR(20)

 The object and library names to place in the list. The first 10 characters contain the object name,

which may be a simple name, a generic name, or the special values *ALL, *ALLUSR, or *IBM. If

*ALLUSR or *IBM is used, the library name must be *LIBL or QSYS and the object type

parameter must be *LIB. When QSYS is specified, the list of libraries returned varies with the

device name specified in the auxiliary storage pool (ASP) control parameter.

1. When *ALLUSR is specified with a library name of *LIBL and an object type parameter of

*LIB, a list of all user libraries in the thread’s library name space is returned. When *LIBL is

specified, the auxiliary storage pool (ASP) device name must be an asterisk (*) if the auxiliary

storage pool (ASP) control parameter is specified. Refer to *ALLUSR in the description of the

second 10 characters of this parameter for a definition of user libraries.

2. When *ALLUSR is specified with a library name of QSYS and an object type parameter of

*LIB, a list of all user libraries in the auxiliary storage pools defined by the auxiliary storage

pool (ASP) control parameter is returned. Refer to *ALLUSR in the description of the second

10 characters of this parameter for a definition of user libraries.

3. When *IBM is specified with a library name of *LIBL and an object type of *LIB, a list of

libraries in the thread’s library name space that are saved or restored on the Save Library

(SAVLIB) or Restore Library (RSTLIB) CL command with LIB(*IBM) is returned. When *LIBL

is specified, the auxiliary storage pool (ASP) device name must be an asterisk (*) if the

auxiliary storage pool (ASP) control parameter is specified.

4. When *IBM is specified with a library name of QSYS and an object type of *LIB, a list of

libraries in the auxiliary storage pools specified by the auxiliary storage pool (ASP) control

parameter that are saved or restored on the Save Library (SAVLIB) or Restore Library

(RSTLIB) CL command with LIB(*IBM) is returned.

Library name errors are reported with escape messages when a single library is specified. When

searching a set of libraries (library specified as *ALL, *ALLUSR, *LIBL, or *USRLIBL or auxiliary

storage pool (ASP) device name specified as *ALLAVL), library errors are reported with

diagnostic messages and processing continues. Library authority error messages are not sent

when searching a set of libraries. Escape messages are not sent for object name errors. To

determine if errors occurred on the object, check the list information returned and the information

status field in the receiver variable.

The second 10 characters identify the name of the library or libraries to search for the specified

objects. The following special values are allowed:

 *ALL All libraries in the auxiliary storage pools defined by the auxiliary storage pool (ASP) control

parameter are searched.

*ALLUSR All user libraries in the auxiliary storage pools (ASPs) defined by the auxiliary storage pool (ASP)

control parameter are searched. User libraries are all libraries with names that do not begin with

the letter Q. For information about the libraries included, see *ALLUSR in Generic library names.

*CURLIB The thread’s current library is searched. When this value is used, the auxiliary storage pool (ASP)

device name in the auxiliary storage pool (ASP) control parameter must be an asterisk (*), if

specified.

*LIBL All libraries in the thread’s library list are searched. When this value is used, the auxiliary storage

pool (ASP) device name in the auxiliary storage pool (ASP) control parameter must be an asterisk

(*), if specified.

*USRLIBL All libraries in the user portion of the thread’s library list are searched. When this value is used,

the auxiliary storage pool (ASP) device name in the auxiliary storage pool (ASP) control parameter

must be an asterisk (*), if specified.

Object APIs 139

When optional parameter group 1 is specified and the job is not the current job, the library name

must be QTEMP or a special value of *CURLIB, *LIBL, or *USRLIBL.

Object type

INPUT; CHAR(10)

 The types of objects to search for. You may either enter a specific object type, or the special value

*ALL. For a complete list of the available object types, see External object types.

Authority control

INPUT; CHAR(*)

 The authority to check for on objects and libraries. This parameter can be used with the selection

control parameter to select the objects to which a user is authorized. To accomplish this, specify a

select or omit status value in the selection control parameter. The object name information is

always returned for objects meeting the search criteria. (This assumes the job has the required

authority to the library.) The information status field is set to an ’A’ when the job does not have

the object authority that is specified.

The following example shows what you would specify to obtain a subset of all objects that you

have object management authority to.

The authority control parameter would contain:

v Length of authority control format: 48

v Call level: 1

v Displacement to object authorities: 28

v Number of object authorities: 1

v Displacement to library authorities: 38

v Number of library authorities: 1

v Object authorities: ’*OBJMGT ’

v Library authorities: ’*USE ’

The selection control parameter would contain:

v Length of selection control format: 21

v Select or omit status value: 1

v Displacement to statuses: 20

v Number of statuses: 1

v Statuses: ’A’

Because the program that calls the QGYOLOBJ API adopts authority, the authority check should

be done at the call level previous to the current level (thus call level 1). With call level 1, the list

would not include any objects for which you have adopted authority by the current program.

The select or omit status value of 1 indicates that the returned list will omit the objects you do

not have object management authority to. This authority is specified in the object authorities field.

The format of this parameter is described in “Authority Control Format” on page 142.

Selection control

INPUT; CHAR(*)

 The criteria used to select or filter objects from the list based on specified information status

values.

This parameter is useful to reduce the total number of objects returned in the list. The list of

objects can be generated with only the specific status that you are interested in. For example, this

might be all damaged objects or all objects that the caller of the API is not authorized to. The list

of objects also can be generated with all objects except objects of a specific status.

The following example shows what you would specify to select all damaged objects:

140 System i: Programming Object APIs

v Length of selection control format: 22

v Select or omit status value: 0

v Displacement to statuses: 20

v Number of statuses: 2

v Statuses: DP

The format of this parameter is described in “Selection Control Format” on page 145.

Number of keyed fields to return

INPUT; BINARY(4)

 The number of keyed fields to return. This is the number of array elements specified for the key

of fields to be returned parameter.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

 The list of the fields to be returned. For a list of the valid keys, see “Valid Keys” on page 150.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter . If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 1

Job identification information

INPUT; CHAR(*)

 The information that is used to identify the thread within a job for which objects can be searched

using the thread’s library list. The format of this parameter is described in “Job Identification

Information Formats” on page 145.

When this parameter is specified and the job is not the current job, the library name must be

QTEMP or a special value of *CURLIB, *LIBL, or *USRLIBL.

A limited amount of information is returned for objects in another job’s QTEMP library.

Information is returned for keys 201, 202, 203, 205, 701, and 702 only. Any other keys requested

will have blanks, hexadecimal 0 (date fields), or 0 returned.

Format of job identification information

INPUT; CHAR(8)

 The format of the job identification information. See “Job Identification Information Formats” on

page 145 for details. The possible format names are:

 JIDF0000 See “JIDF0000 Format” on page 145 for details on this format. This format is provided to simplify

the coding of this parameter when this parameter must be specified because optional parameter

groups after this one are to be specified and the functions provided by the other formats of this

parameter are not needed. Using this format gives the same result as if optional parameter group

1 were not specified. The information retrieved is for the thread in which this program is running.

JIDF0100 See “JIDF0100 Format” on page 146 for details on this format.

JIDF0200 See “JIDF0200 Format” on page 147 for details on this format. If the thread handle is available,

format JIDF0200 provides faster access than format JIDF0100 to a thread other than the current

thread.

Object APIs 141

Optional Parameter Group 2

Auxiliary storage pool (ASP) control

Input; CHAR(*)

 The information used to define the auxiliary storage pool (ASP) to search. The format of this

parameter is described in “Auxiliary Storage Pool (ASP) Control Format” on page 147.

Sort Information Format

The following shows the format of the sort information parameter. For detailed descriptions of the fields

in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary. These

fields repeat for each

sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved.

Note: If the last three fields (sort key field data type, sort order and the reserved field) are not used, they

must be set to hexadecimal zeros. This causes all the data to be treated as character data, and it is sorted

in ascending order.

Field Descriptions

Number of keys to sort on. The number of fields within the record structure to sort on. If zero is

specified, the list is not sorted.

Reserved. An unused. This field must contain hexadecimal zeros.

Sort key field data type. The data type of the field to sort on. Refer to the key data type field in the Sort

(QLGSORT) API for information about the list of data types available.

Sort key field length. The length of the field to sort on.

Sort key field starting position. The starting position of the field within the record of information to sort

on.

Sort order. Whether the list should be sorted in ascending or descending order according to the key.

 1 Sort in ascending order.

2 Sort in descending order.

Authority Control Format

The following shows the format of the authority control parameter. For detailed descriptions of the fields

in the table, see “Field Descriptions” on page 143.

142 System i: Programming Object APIs

QLGSORT.htm

Offset

Type Field Dec Hex

0 0 BINARY(4) Length of authority control format

4 4 BINARY(4) Call level

8 8 BINARY(4) Displacement to object authorities

12 C BINARY(4) Number of object authorities

16 10 BINARY(4) Displacement to library authorities

20 14 BINARY(4) Number of library authorities

24 18 BINARY(4) Reserved

 ARRAY(*) of

CHAR(10)

Object authorities

 ARRAY(*) of

CHAR(10)

Library authorities

Field Descriptions

Call level. The number of call levels to go back in the call stack to do the authority check.

For example, if the program that calls this API adopts authority, you probably would not want the

authority check to use the adopted authority. Therefore, the authority check should be done at the call

level previous to the current level. This field should then contain a 1. You can check the authority at

various call levels by specifying a number equivalent to the call level. For example, to check the authority

at the current call level, specify a 0. To check the authority at the previous call level, specify a 1.

This field must be greater than or equal to 0 and less than the number of programs in the call stack.

Displacement to library authorities. The byte offset from the beginning of the authority control format to

the list of library authorities. The offset value must be 0, 28, or a number greater than 28. When 0 is

specified, the number of library authorities should also be 0. A value of 28 is past the reserved portion of

the format.

Displacement to object authorities. The byte offset from the beginning of the authority control format to

the list of object authorities. The offset value must be 0, 28, or a number greater than 28. When 0 is

specified, the number of object authorities should also be 0. A value of 28 is past the reserved portion of

the format.

Length of authority control format. The total length of the authority control format. The minimum size is

28 bytes. When the size is 28, it is assumed that the number of library authorities and the number of

object authorities are both 0. To allow for one object and one library authority, the size should be 48

bytes. An error is returned if the length specified is less than the minimum.

Library authorities. The authority to check for libraries. The array can contain up to ten 10-character

fields. If the number of library authorities is 0, *EXECUTE authority is checked for on the libraries.

The authority values can be specified in any combination. If *ALL, *CHANGE, or *USE is specified with

any of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 10. This equals all of the specific object and

data authorities that can be listed separately.

The following identifies the type of authority the user has to the library:

Object APIs 143

*ALL All authority

*CHANGE Change authority

*USE Use authority

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

Number of library authorities. The number of authorities specified in the library authorities array. You

can specify 0 through 10 authorities. When 0 is specified, *EXECUTE authority is checked for on the

libraries.

Number of object authorities. The number of authorities specified in the object authorities array. You can

specify 0 through 11 authorities. When 0 is specified, *ANY authority is checked for on the objects.

Object authorities. The authority to check for objects. The array can contain up to eleven 10-character

fields. If the number of object authorities is 0, *ANY authority is checked for on the objects.

The authority values can be specified in any combination with the exception of the special value *ANY.

This must be specified as the only value. If *ALL, *CHANGE, *USE, or *AUTLMGT is specified with any

of the other authority values, the authority checked is the cumulative authority value.

The maximum number of authorities that can be specified is 11, which equals all the specific object and

data authorities and *AUTLMGT authority.

The following identifies the type of authority the user has to the object:

 *ALL All authority

*CHANGE Change authority

*USE Use authority

*AUTLMGT Authorization list management authority. (This value is valid only if the object type is *AUTL. It

will be ignored for other object types.)

*OBJOPR Object operational authority

*OBJMGT Object management authority

*OBJEXIST Object existence authority

*OBJALTER Alter authority

*OBJREF Reference authority

*READ Read authority

*ADD Add authority

*UPD Update authority

*DLT Delete authority

*EXECUTE Execute authority

*ANY Some authority other than *EXCLUDE. (If this value is specified, no other values can be specified.)

Reserved. An unused field. This field must contain hexadecimal zeros.

144 System i: Programming Object APIs

Selection Control Format

The following shows the format of the selection control parameter. For detailed descriptions of the fields

in the table, see “Field Descriptions”.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of selection control format

4 4 BINARY(4) Select or omit status value

8 8 BINARY(4) Displacement to statuses

12 C BINARY(4) Number of statuses

16 10 BINARY(4) Reserved

 ARRAY(*) of

CHAR(1)

Statuses

Field Descriptions

Displacement to statuses. The byte offset from the beginning of the selection control format to the list of

statuses requested. The offset value must be at least 20, which is past the reserved portion of the format.

Length of selection control format. The total length of the selection control format. The minimum size is

21 bytes, which allows for one status value. An error is returned if the length specified is less than the

minimum.

Number of statuses. The number of statuses specified in the statuses array. You can specify 1 through 5

statuses.

Reserved. An unused field. This field must contain hexadecimal zeros.

Select or omit status value. An indicator that determines whether objects are selected or omitted from

the list based on the statuses specified.

This field is useful in generating a list of objects with a certain information status, such as damaged or

partially damaged objects. It can also be used to generate a list of all objects except objects with a certain

information status, such as unauthorized objects.

 0 Select on status value

1 Omit on status value

Statuses. The status of objects to select or omit from the list of objects generated. Valid values are all of

the possible values listed under the Information status (page 148) field in the Format of Receiver Variable.

The special value * can be used to select all objects with any information status field.

Job Identification Information Formats

JIDF0000 Format

The following shows the details of format JIDF0000. For detailed descriptions of the field in the table, see

“Field Descriptions” on page 146.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Default job name

Object APIs 145

Field Descriptions

Default job name. This field must contain an asterisk ’* ’. The information retrieved is for the thread in

which this program is running.

JIDF0100 Format

The following shows the details of format JIDF0100 of the information needed to identify the thread’s

library list used for an object search. For detailed descriptions of the fields in the table, see “Field

Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. The unique value that is used to identify the thread within the job. If the thread

indicator is not 0, this field must contain hexadecimal zeros.

Thread indicator. The value that is used to specify the thread within the job for which information is to

be retrieved. The following values are supported:

 0 Specifies that information should be retrieved for the thread specified in the thread identifier field.

1 Specifies that information should be retrieved for the thread that this program is currently running in. The

combination of the internal job identifier, job name, job number, and user name fields must also identify the

job containing the current thread.

2 Information should be retrieved for the initial thread of the identified job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

146 System i: Programming Object APIs

JIDF0200 Format

The following shows the details of format JIDF0200 for the information needed to identify the thread’s

library list used for an object search. For detailed descriptions of the fields in the table, see “Field

Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),

UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value which is used to address a particular thread within a job. A valid thread handle

must be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value which is used to uniquely identify a thread within a job. A valid thread

identifier must be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Auxiliary Storage Pool (ASP) Control Format

The following shows the format of the auxiliary storage pool (ASP) control parameter. This parameter is

used to define the auxiliary storage pools (ASPs) to search. For detailed descriptions of the fields in the

table, see “Field Descriptions” on page 148.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of auxiliary storage pool (ASP) control format

4 4 CHAR(10) Auxiliary storage pool (ASP) device name

14 E CHAR(10) Auxiliary storage pool (ASP) search type

Object APIs 147

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of an auxiliary storage pool (ASP) device in which

storage is allocated for the library that contains the object. The ASP device must have a status of

’Available’. This parameter must be an asterisk (*) if optional parameter group 2 is specified when

*CURLIB, *LIBL, or *USRLIBL is specified as the library name in the object and library name parameter.

If optional parameter group 2 is omitted in cases where it is valid for the ASP device name to have a

value other than an asterisk (*), the thread’s library name space will be used. One of the following special

values may be specified:

 * The ASPs in the thread’s library name space.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32).

*CURASPGRP The ASPs in the current thread’s ASP group.

*ALLAVL All available ASPs. This includes the system ASP (ASP 1), all defined basic user ASPs (ASPs 2-32),

and all available primary and secondary ASPs (ASPs 33-255 with a status of ’Available’). The ASP

groups are searched in ascending alphabetical order by the primary ASP name. The system ASP

and all defined basic user ASPs are searched after the ASP groups. ASPs and libraries to which

you are not authorized are bypassed and no authority error messages are sent.

Auxiliary storage pool (ASP) search type. The type of the search when a specific auxiliary storage pool

(ASP) device name is specified for the ASP device name field. This field must be blanks when a special

value is specified for the auxiliary storage pool (ASP) device name field. One of the following values may

be specified:

 *ASP Only the single ASP named in the auxiliary storage pool (ASP) device name field will be searched.

*ASPGRP All ASPs in the auxiliary storage pool (ASP) group named in the auxiliary storage pool (ASP)

device name field will be searched. The device name must be the name of the primary auxiliary

storage pool (ASP) in the group.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool

(ASP) control format. The length can be 0 bytes to indicate that no auxiliary storage pool (ASP) control

information is provided. Otherwise, the length must be 24 bytes. An error is returned if the length

specified is not 24 or 0.

Format of Receiver Variable

To get all of the information from a format, specify the key that will return all of the fields associated

with the format. There is no format parameter for this API.

The offsets given in the tables below apply only if the key for a format is specified. If individual field

keys are specified, the fields are returned in the order in which the keys are specified.

For detailed descriptions of the fields in the table, see “Field Descriptions” on page 149.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name used

10 A CHAR(10) Object library name used

20 14 CHAR(10) Object type used

30 1E CHAR(1) Information status

31 1F CHAR(1) Reserved

148 System i: Programming Object APIs

Offset

Type Field Dec Hex

32 20 BINARY(4) Number of fields returned

Offsets vary. these

fields repeat, in the

order listed, for each

key field selected.

BINARY(4) Length of field information returned

BINARY(4) Key field for field returned

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data returned

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The actual data contained in the keyed field.

Information status. Whether the QGYOLOBJ API returns the requested information for this object. If you

do not request any keys to be returned, ignore this field. Possible values are:

 blank The requested information is returned. No errors occurred.

A No information is returned. The job that called this API needs the authority specified in the object

authorities field to the object.

D The requested information is returned but may be incomplete. The object is damaged and should be

deleted and created again as soon as possible.

L No information is returned because the object is locked.

P The requested information is returned. However, the object is partially damaged. In most instances, to

recover from partial object damage, you delete the damaged object and either restore a saved copy or

create the object again. For some damaged objects, special recovery procedures are possible. See the

Recovering your system topic collection for more information about damaged objects.

If two or more conditions occur that include no authorization (A) to the object, the status is set to A. If the

object is damaged (D) and locked (L), or if the object is partially damaged (P) and locked, the status is set

to L.

If the value of this field is A or L, your application should not use the other fields for the object. Only the

object name, library, and type fields contain accurate data.

Key field for field returned. The specific key for the field being returned. See “Valid Keys” on page 150.

Length of data returned. The length of data returned for this keyed field.

Length of field information returned.The total length of information returned for this keyed field. This

length includes the length of this field and all of the other fields in the structure returned for this key.

Number of fields returned. The number of keyed fields of information returned.

Object library name used. The name of the library that contains the object.

Object name used. The name of the object.

Object type used. The type of the object. For a list of all the available object types, see External object

types.

Object APIs 149

Reserved. An unused field. This field contains hexadecimal zeros.

Type of data. The type of data that is contained in this keyed field. Possible values follow:

 B Binary data

C Character data

S Special structured field used for key combinations.

Valid Keys

The following table contains a list of the valid keys that are used for the key of fields to be returned

parameter. See “Field Descriptions” on page 155 for the descriptions of the valid key fields.

 Key Type Description

0200 CHAR(80) Special key combination. See “Key 0200 Contents” on page 152 for the

key combination.

0201 CHAR(1) Information status

0202 CHAR(10) Extended object attribute

0203 CHAR(50) Text description

0204 CHAR(10) User-defined attribute

0205 BINARY(4) Order in library list

0300 CHAR(144) Special key combination. See “Key 0300 Contents” on page 152 for the

key combination.

0301 BINARY(4) Object auxiliary storage pool (ASP) number

0302 CHAR(10) Object owner

0303 CHAR(2) Object domain

0304 CHAR(8) Creation date and time

0305 CHAR(8) Change date and time

0306 CHAR(10) Storage

0307 CHAR(1) Object compression status

0308 CHAR(1) Allow change by program

0309 CHAR(1) Changed by program

0310 CHAR(10) Object auditing value

0311 CHAR(1) Digitally signed

0312 CHAR(1) Digitally signed by a system-trusted source

0313 CHAR(1) Digitally signed more than once

0314 BINARY(4) Library auxiliary storage pool (ASP) number

0400 CHAR(296) Special key combination. See “Key 0400 Contents” on page 153 for the

key combination.

0401 CHAR(10) Source file name

0402 CHAR(10) Source file library name

0403 CHAR(10) Source file member name

0404 CHAR(13) Source file updated date and time

0405 CHAR(10) Creator’s user profile

0406 CHAR(8) System where object was created

150 System i: Programming Object APIs

Key Type Description

0407 CHAR(9) System level

0408 CHAR(16) Compiler

0409 CHAR(8) Object level

0410 CHAR(1) User changed

0411 CHAR(16) Licensed program

0412 CHAR(10) Program temporary fix (PTF)

0413 CHAR(10) Authorized program analysis report (APAR)

0414 CHAR(10) Primary group

0415 CHAR(1) Optimum space alignment

0416 BINARY(4) Primary associated space size

0500 CHAR(504) Special key combination. See “Key 0500 Contents” on page 153 for the

key combination.

0501 CHAR(8) Object saved date and time

0502 CHAR(8) Object restored date and time

0503 BINARY(4) Saved size

0504 BINARY(4) Saved size multiplier

0505 BINARY(4) Save sequence number

0506 CHAR(10) Save command

0507 CHAR(71) Save volume ID

0508 CHAR(10) Save device

0509 CHAR(10) Save file name

0510 CHAR(10) Save file library name

0511 CHAR(17) Save label

0512 CHAR(8) Save active date and time

0513 CHAR(1) Journal status

0514 CHAR(10) Journal name

0515 CHAR(10) Journal library name

0516 CHAR(1) Journal images

0517 CHAR(1) Journal entries to be omitted

0518 CHAR(8) Journal start date and time

0600 CHAR(548) Special key combination. See “Key 0600 Contents” on page 154 for the

key combination.

0601 CHAR(8) Last-used date and time

0602 CHAR(8) Reset date and time

0603 BINARY(4) Days-used count

0604 CHAR(1) Usage information updated

0605 CHAR(10) Object auxiliary storage pool (ASP) device name

0606 CHAR(10) Library auxiliary storage pool (ASP) device name

0700 CHAR(560) Special key combination. See “Key 0700 Contents” on page 154 for the

key combination.

0701 BINARY(4) Object size

0702 BINARY(4) Object size multiplier

Object APIs 151

Key Type Description

0703 CHAR(1) Object overflowed auxiliary storage pool (ASP) indicator

0704 CHAR(10) Object auxiliary storage pool (ASP) group name

0705 CHAR(10) Library auxiliary storage pool (ASP) group name

0706 CHAR(10) Starting journal receiver name for apply

0707 CHAR(10) Starting journal receiver library name

0708 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) device name

0709 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) group name

Key 0200 Contents

The following information is returned in the field when key 0200 is specified. For detailed descriptions of

the subfields in the table, see “Field Descriptions” on page 155.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Information status

1 1 CHAR(10) Extended object attribute

11 B CHAR(50) Text description

61 3D CHAR(10) User-defined attribute

71 47 BINARY(4) Order in library list

75 4B CHAR(5) Reserved

Key 0300 Contents

the following information is returned in the field when key 0300 is specified. For detailed descriptions of

the subfields in the table, see “Field Descriptions” on page 155.

 Offset

Type Field Dec Hex

0 0 Everything from key 0200

80 50 BINARY(4) Object auxiliary storage pool (ASP) number

84 54 CHAR(10) Object owner

94 5E CHAR(2) Object domain

96 60 CHAR(8) Creation date and time

104 68 CHAR(8) Change date and time

112 70 CHAR(10) Storage

122 7A CHAR(1) Object compression status

123 7B CHAR(1) Allow change by program

124 7C CHAR(1) Changed by program

125 7D CHAR(10) Object auditing value

135 87 CHAR(1) Digitally signed

136 88 CHAR(1) Digitally signed by system-trusted source

152 System i: Programming Object APIs

Offset

Type Field Dec Hex

137 89 CHAR(1) Digitally signed more than once

138 8A CHAR(2) Reserved

140 8C BINARY(4) Library auxiliary storage pool (ASP) number

Key 0400 Contents

The following information is returned in the field when key 0400 is specified. For detailed descriptions of

the subfields in the table, see “Field Descriptions” on page 155.

 Offset

Type Field Dec Hex

0 0 Everything from key 0300

144 90 CHAR(10) Source file name

154 9A CHAR(10) Source file library name

164 A4 CHAR(10) Source file member name

174 AE CHAR(13) Source file updated date and time

187 BB CHAR(10) Creator’s user profile

197 C5 CHAR(8) System where object was created

205 CD CHAR(9) System level

214 D6 CHAR(16) Compiler

230 E6 CHAR(8) Object level

238 EE CHAR(1) User changed

239 EF CHAR(16) Licensed program

255 FF CHAR(10) Program temporary fix (PTF)

265 109 CHAR(10) Authorized program analysis report (APAR)

275 113 CHAR(10) Primary group

285 11D CHAR(2) Reserved

287 11F CHAR(1) Optimum space alignment

288 120 BINARY(4) Primary associated space size

292 124 CHAR(4) Reserved

Key 0500 Contents

The following information is returned in the field when key 0500 is specified. For detailed descriptions of

the subfields in the table, see “Field Descriptions” on page 155.

 Offset

Type Field Dec Hex

0 0 Everything from key 0400

296 128 CHAR(8) Object saved date and time

304 130 CHAR(8) Object restored date and time

Object APIs 153

Offset

Type Field Dec Hex

312 138 BINARY(4) Saved size

316 13C BINARY(4) Saved size multiplier

320 140 BINARY(4) Save sequence number

324 144 CHAR(10) Save command

334 14E CHAR(71) Save volume ID

405 195 CHAR(10) Save device

415 19F CHAR(10) Save file name

425 1A9 CHAR(10) Save file library name

435 1B3 CHAR(17) Save label

452 1C4 CHAR(8) Save active date and time

460 1CC CHAR(1) Journal status

461 1CD CHAR(10) Journal name

471 1D7 CHAR(10) Journal library name

481 1E1 CHAR(1) Journal images

482 1E2 CHAR(1) Journal entries to be omitted

483 1E3 CHAR(8) Journal start date and time

491 1EB CHAR(13) Reserved

Key 0600 Contents

The following information is returned in the field when key 0600 is specified. For detailed descriptions of

the subfields in the table, see “Field Descriptions” on page 155.

 Offset

Type Field Dec Hex

0 0 Everything from key 0500

504 1F8 CHAR(8) Last-used date and time

512 200 CHAR(8) Reset date and time

520 208 BINARY(4) Days-used count

524 20C CHAR(1) Usage information updated

525 20D CHAR(10) Object auxiliary storage pool (ASP) device name

535 217 CHAR(10) Library auxiliary storage pool (ASP) device name

545 221 CHAR(3) Reserved

Key 0700 Contents

The following information is returned in the field when key 0700 is specified. For detailed descriptions of

the subfields in the table, see “Field Descriptions” on page 155.

154 System i: Programming Object APIs

Offset

Type Field Dec Hex

0 0 Everything from key 0600

548 224 BINARY(4) Object size

552 228 BINARY(4) Object size multiplier

556 22C CHAR(1) Object overflowed auxiliary storage pool (ASP) indicator

557 22D CHAR(10) Object auxiliary storage pool (ASP) group name

567 237 CHAR(10) Library auxiliary storage pool (ASP) group name

577 241 CHAR(10) Starting journal receiver name for apply

587 24B CHAR(10) Starting journal receiver library name

597 255 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) device

name

607 25F CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) group

name

617 269 CHAR(3) Reserved

Field Descriptions

Allow change by program. Whether the object can be changed by the Change Object Description

(QLICOBJD) API.

 0 The object cannot be changed with the QLICOBJD API.

1 The object can be changed with the QLICOBJD API.

Authorized program analysis report (APAR). The identifier of the authorized program analysis report

(APAR) that caused this object to be replaced. the field is blank if the object did not change because of an

APAR.

Changed by program. Whether the object has been changed by the Change Object Description

(QLICOBJD) API.

 0 The object has not been changed with the QLICOBJD API.

1 The object has been changed with the QLICOBJD API.

Change date and time. The time at which the object was last changed, in system time-stamp format.

Compiler. The licensed program identifier, version number, release level, and modification level of the

compiler. The field has a pppppppVvvRrrMmm format, where:

 ppppppp The licensed program identifier.

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

The field is blank if you do not compile the program.

Creation date and time. The time at which the object was created, in system time-stamp format. See

Convert Date and Time Format (QWCCVTDT) API for more information about using this time-stamp

format.

Object APIs 155

qwccvtdt.htm

Creator’s user profile. The name of the user that created the object.

Days-used count. The number of days the object was used. If the object does not have a last-used date,

the count is 0.

Digitally signed. A 1-character variable that indicates whether the object has a digital signature.

 0 The object does not have a digital signature.

1 The object has a digital signature.

Digitally signed by system-trusted source. A 1-character variable that indicates whether the object is

signed by a source that is trusted by the system.

 0 None of the object signatures came from a source that is trusted by the system.

1 The object is signed by a source that is trusted by the system. If the object has multiple signatures, at least one

of the signatures came from a source that is trusted by the system.

Digitally signed more than once. A 1-character variable that indicates whether the object has more than

one digital signature.

 0 The object has only one digital signature or does not have a digital signature. Refer to the digitally signed

variable to determine whether the object has a digital signature.

1 The object has more than one digital signature. Refer to the digitally signed by system-trusted source variable

to determine whether the object has a digital signature from a source trusted by the system.

Extended object attribute. The extended attribute of the object, such as a program or file type. Extended

attributes further describe the object. For example, an object type of *PGM may have a value of RPG

(RPG program) or CLP (CL program), and an object type of *FILE may have a value of PF (physical file),

LF (logical file), DSPF (display file), SAVF (save file), and so on.

Information status. Whether the QGYOLOBJ API returns the requested information for this object. If you

do not request any keys to be returned, ignore this field. Possible values are:

 blank The requested information is returned. No errors occurred.

A No information is returned. The job that called this API needs the authority specified in the object

authorities field to the object.

D The requested information is returned but may be incomplete. The object is damaged and should be

deleted and created again as soon as possible.

L No information is returned because the object is locked.

P The requested information is returned. However, the object is partially damaged. In most instances, to

recover from partial object damage, you delete the damaged object and either restore a saved copy or

create the object again. For some damaged objects, special recovery procedures are possible. See the

Recovering your system topic collection for more information about damaged objects.

If two or more conditions occur that include no authorization (A) to the object, the status is set to A. If the

object is damaged (D) and locked (L), or if the object is partially damaged (P) and locked, the status is set

to L.

If the value of this field is A or L, your application should not use the other fields for the object. Only the

object name, library, and type fields contain accurate data.

Journal entries to be omitted. The journal entries to be omitted. the field is 1 if open and close operations

do not generate open and close journal entries. The field is 0 if no entries are omitted. This field is blank if

the object has never been journaled.

156 System i: Programming Object APIs

Journal images. The type of images that are written to the journal receiver for updates to the object. the

field is 0 if only after images are generated for changes to the object. The field is 1 if both before and after

images are generated for changes to the object. This field is blank if the object has never been journaled.

Journal library name. The name of the library that contains the journal. This field is blank if the object

has never been journaled.

Journal name. The name of the current or last journal. This field is blank if the object has never been

journaled.

Journal start date and time. The time at which journaling for the object was last started, in system

time-stamp format. This field contains hexadecimal zeros if the object has never been journaled.

Journal status. The 1-character variable that returns the current journaling status of an object. The value

is 1 if the object currently is being journaled; the value is 0 if the object currently is not being journaled.

Last-used date and time. The date and time at which the object was last used, in system time-stamp

format. If the object has no last-used date, the field contains hexadecimal zeros.

Library auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device

where storage is allocated for the library that contains the object. The following special values may be

returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) group name. The name of the auxiliary storage pool (ASP) group

where storage is allocated for the library that contains the object. The name of the ASP group is the name

of the primary ASP within the group. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where

storage is allocated for the library that contains the object. Valid values are:

 1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Licensed program. The name, release level, and modification level of the licensed program if the

retrieved object is part of a licensed program. The 7-character name starts in character position 1, the

version number starts in position 8, the release level starts in position 11, and the modification level starts

in position 14. The field is blank if the retrieved object is not a part of a licensed program.

Object auditing value. The type of auditing for an object. The valid values are:

 *NONE No auditing occurs for this object when it is read or changed regardless of the user who is

accessing the object.

*USRPRF Audit this object only if the user accessing the object is being audited. The user profile for the job

is tested to determine if auditing should be done for this object. The user profile can specify if

only change access is audited or if both read and change accesses are audited for this object.

*CHANGE Audit all change access to this object by all users on the system.

Object APIs 157

*ALL Audit all access to this object by all users on the system. All access is defined as a read or change

operation.

*NOTAVL The auditing value is not available because you do not have either all object (*ALLOBJ) or audit

(*AUDIT) special authority.

Object auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device

where storage is allocated for the object. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) group name. The name of the auxiliary storage pool (ASP) group

where storage is allocated for the object. The name of the ASP group is the name of the primary ASP

within the group. The value returned may be the same as the value returned for the object auxiliary

storage pool (ASP) device name field. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where

storage is allocated for the object. Valid values are:

 1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object compression status. Whether the object is compressed or decompressed. The status is returned

with one of these values:

 Y Compressed.

N Permanently decompressed and compressible.

X Permanently decompressed and not compressible.

T Temporarily decompressed.

F Saved with storage freed; compression status cannot be determined.

Temporarily decompressed objects exist in both decompressed and compressed form. Permanently

decompressed objects exist in decompressed form only. The system handles some decompression

automatically, depending on the type of object, the operation performed on it, and its frequency of use.

For an overview of object compression and decompression, see Object compression or decompression. For

details about how to explicitly compress and decompress objects, see the online help for these commands:

Compress Object (CPROBJ), Decompress Object (DCPOBJ), and Reclaim Temporary Storage

(RCLTMPSTG).

Object domain. The domain that contains the object. Possible values follow:

 *S The object is in the system domain.

*U The object is in the user domain.

Object level. The object control level for the created object.

Object overflowed auxiliary storage pool (ASP) indicator. Whether the object overflowed the auxiliary

storage pool (ASP).

158 System i: Programming Object APIs

0 The object has not overflowed the ASP.

1 The object overflowed the ASP in which it resides.

For objects in the system auxiliary storage pool (ASP 1) or in a primary or secondary ASP (ASPs 33-255),

a 0 is always returned because it is not possible for an object that resides in the system ASP or in a

primary or secondary ASP to overflow its ASP.

Object owner. The name of the object owner’s user profile.

Object restored date and time. The time at which the object was restored, in system time-stamp format.

If the object has never been restored, the field contains hexadecimal zeros.

Object saved date and time. The time at which the object was saved, in system time-stamp format. If the

object has never been saved, the field contains hexadecimal zeros.

Object size. The size of the object in units of the object size multiplier. The object size is equal to or

smaller than the object size multiplied by the object size multiplier. The object size includes the value

returned in the primary associated space size field (key 0416).

Object size multiplier. The value to multiply the object size by to get the object size in bytes.

The following values can be returned:

 1 The object size is smaller than 1 000 000 000 bytes.

1024 The object size is between 1 000 000 000 and 1 023 999 998 976 bytes.

1048576 The object size is larger than 1 023 999 998 976 bytes.

Optimum space alignment. A 1-character variable that indicates whether the space associated with the

object has been optimally aligned. Optimum alignment may allow for better performance of applications

that use the object. The possible values are as follows:

 0 The space associated with the object has not been optimally aligned.

1 The space associated with the object has been optimally aligned.

2 There is not a space associated with the object.

Order in library list. The order in which the library appears in the entire library list. If the library is in

the library list more than once, the order of the first occurrence of the library is returned. If the library is

not in the library list, then 0 is returned for the order number.

Primary associated space size. The size, in bytes, of the primary associated space used by the object. If

the object does not have an associated space, the size is 0.

Primary group. The name of the user who is the primary group for the object. If no primary group exists

for the object, this field contains a value of *NONE.

Program temporary fix (PTF). The number of the program temporary fix (PTF) number that caused this

object to be replaced. This field is blank if the object was not changed because of a PTF.

Reserved. An unused field. This field contains hexadecimal zeros.

Reset date and time. The date the days-used count was last reset to zero, in system time-stamp format. If

the days-used count has never been reset, the field contains hexadecimal zeros.

Object APIs 159

Save active date and time. The date and time the object was last saved when the SAVACT(*LIB,

*SYSDFN, or *YES) save operation was specified, in system time-stamp format. This parameter is found

on the Save Library (SAVLIB), Save Object (SAVOBJ), Save Changed Object (SAVCHGOBJ), and Save

Document Library Object (SAVDLO) CL commands. If the object has never been saved or if

SAVACT(*NO) was specified on the last save operation for the object, the field contains hexadecimal

zeros.

Save command. The command used to save the object. The field is blank if the object was not saved.

Save device. The type of device to which the object was last saved. The field is *SAVF if the last save

operation was to a save file. The field is *DKT if the last save operation was to diskette. The field is *TAP

if the last save operation was to tape. The field is *OPT if the last save operation was to optical. The field

is blank if the object was not saved.

Save file library name. The name of the library that contains the save file if the object was saved to a

save file. The field is blank if the object was not saved to a save file.

Save file name. The name of the save file if the object was saved to a save file. The field is blank if the

object was not saved to a save file.

Save label. The file label used when the object was saved. The variable is blank if the object was not

saved to tape, diskette, or optical. The value of the variable corresponds to the value specified for the

LABEL parameter on the command used to save the object.

Save sequence number. The tape sequence number assigned when the object was saved on tape. The

field contains zeros if the object was not saved.

Saved size. The size of the object in bytes of storage at the time of the last save operation. The saved size

is equal to or smaller than the saved size multiplied by the saved size multiplier. The size includes the

size of the primary associated space, if one exists. The field contains zeros if the object was not saved.

Saved size multiplier. The value to multiply the saved size by to get the saved size in bytes.

The following values can be returned:

 1 The saved size is smaller than 1 000 000 000 bytes.

1024 The saved size is between 1 000 000 000 and 1 023 999 998 976 bytes.

1048576 The saved size is larger than 1 023 999 998 976 bytes.

Save volume ID. The tape, diskette, or optical volumes that are used for saving the object. The variable

returns a maximum of ten 6-character volumes. The volume IDs begin in character positions 1, 8, 15, 22,

29, 36, 43, 50, 57, and 64. Each volume ID entry is separated by a single character. If the object was saved

in parallel format, the separator character contains a 2 before the first volume in the second media file, a

3 before the third media file, and so on, up to a 0 before the tenth media file. Otherwise, the separator

characters are blank. If more than 10 volumes are used and the object was saved in serial format, 1 is

returned in the 71st character of the variable. If the object was saved in parallel format, a 2 is returned in

the 71st character of the variable. Otherwise, the 71st character is blank. The field is blank if the object

was last saved to a save file or if it was never saved.

Source file library name. The name of the library that contains the source file that is used to create the

object. The field is blank if no source file created the object.

Source file member name. The name of the member in the source file. The field is blank if no source file

created the object.

160 System i: Programming Object APIs

Source file name. The name of the source file that is used to create the object. The field is blank if no

source file created the object.

Source file updated date and time. The date and time the member in the source file was last updated.

This field is in the CYYMMDDHHMMSS format:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

The field is blank if no source file created the object.

Starting journal receiver library name. The name of the library that contains the starting journal receiver

for apply. This field is blank if the object has never been journaled.

Starting journal receiver library auxiliary storage pool (ASP) device name. The name of the auxiliary

storage pool (ASP) device where storage is allocated for the library that contains the starting journal

receiver for apply. This field is blank if the object has never been journaled. The following special values

may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver library primary auxiliary storage pool (ASP) group name. The name of the

auxiliary storage pool (ASP) group where storage is allocated for the starting journal receiver library. The

name of the ASP group is the name of the primary ASP within the group. The value returned may be the

same as the value returned for the starting journal receiver library auxiliary storage pool (ASP) device

name field. This field is blank if the object has never been journaled. The following special values may be

returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver name for apply. The name of the oldest journal receiver needed to successfully

use the Apply Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG)

command. This field is blank if the object has never been journaled.

For a file object, the journal receiver will contain the entry representing the start-of-the-save operation.

However, if there are members within the file that contain partial transactions, then those members may

require an earlier journal receiver. Use the Display File Description (DSPFD) command to determine the

partial transaction state of the members of the file.

Storage. The storage status of the object data. *FREE indicates the object data is freed and the object is

suspended. *KEEP indicates the object data is not freed and the object is not suspended.

System level. The level of the operating system when the object was created. The field has a

VvvRrrMmm format, where:

 Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Object APIs 161

Mmm The character M is followed by a 2-character modification level.

System where object was created. The name of the system on which the object was created.

Text description. The text description of the object. The field is blank if no text description is specified.

Usage information updated. Whether the object usage information is updated for this object type. The

indicator is returned as Y (Yes) or N (No).

User changed. Whether the user program was changed.

 0 The object was not changed by the user.

1 The user changed the object.

User-defined attribute. A characteristic of an object type. This field is set by the user while using the

Change Object Description (QLICOBJD) API.

Error Messages

 Message ID Error Message Text

CPFB8ED E Device description &1 not correct for operation.

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF1867 E Value &1 in list not valid.

CPF21AA E Number of statuses must be between 1 and 5.

CPF21AB E Status value &1 not valid.

CPF21AC E Length or offset value &1 not valid.

CPF21A7 E Authority value &1 not valid.

CPF21A8 E Must specify *ANY as only authority value.

CPF21A9 E Select or omit value &1 not valid.

CPF2173 E Value for ASPDEV not valid with special value for library.

CPF218C E &1 not a primary or secondary ASP.

CPF218D E &1 not a primary ASP when *ASPGRP specified.

CPF22F7 E Number of authorities must be between 1 and &1.

CPF22F9 E Call level &1 not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9F81 E API &1 requires too much information to be collected prior to sorting.

CPF980A E &1 routine in &2 module detected an exception. The exception return code was &3.

162 System i: Programming Object APIs

Message ID Error Message Text

CPF9804 E Object &2 in library &3 damaged.

CPF9810 E Library &1 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0083 E &1 is not valid for number of fields to return.

API introduced: V3R6

 Top | “Object APIs,” on page 1 | APIs by category

Rename Object (QLIRNMO) API

 Required Parameter Group:

 1 From qualified object name Input Char(20)

2 Object type Input Char(10)

3 Target qualified object name Input Char(20)

4 Replace object Input Char(1)

5 Error code I/O Char(*)

 Optional Parameter Group 1:

 6 From library auxiliary storage pool (ASP) device name Input Char(10)

7 Target library auxiliary storage pool (ASP) device name Input Char(10)

 Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 166.

The Rename Object (QLIRNMO) API renames an existing object to a new object name or moves the

object to a different library or both, and optionally replaces the existing target object. This API combines

the functions of the Rename Object (RNMOBJ) and the Move Object (MOVOBJ) commands. The API

allows you to rename and move in one step, and optionally replace the existing object in the target

library.

When the replace object parameter requests to replace an existing object and the target object already

exists, the following occur:

v The *PUBLIC and private authorities from the target object replace the authorities on the renamed

object.
v The owner of the object is the owner of the from object.
v If the object is not a *PGM object, the target object is deleted.
v For a *PGM object, the object is renamed and moved to library QRPLOBJ (or the QRPLxxxxx library if

the target object is in a library in primary or secondary auxiliary storage pool ’xxxxx’). If an error

occurs with the QRPLOBJ library, the object is moved into the QTEMP library. If an error occurs with

the QRPLxxxxx or QTEMP library, the object is deleted. The renamed program will have the same user

profile (USRPRF) value as the target program. If the target program has the adopted authority

Object APIs 163

#TOP_OF_PAGE
aplist.htm

USRPRF(*OWNER) attribute, the owner of the from program must be the same as the owner of the

target program. An error message is issued if the owners do not match. For more information about

adopted authority, see the Security reference topic collection. The use adopted authority (USEADPAUT)

value from the target program is copied to the from program as long as the user who performs the

rename operation can create and update programs with the USEADPAUT(*YES) attribute. The

QUSEADPAUT system value determines whether or not users can create and update programs to use

adopted authority. If the program being replaced has USEADPAUT(*YES) and the user cannot create

and update programs to use adopted authority, the USEADPAUT value of the from program remains

the same.
v For a *CRQD object, the from change request description will have the same user profile (USRPRF)

value as the target change request description. If the target change request description has a user

profile value of USRPRF(*OWNER), the owner of the from object must be the same as the target object.

An error message is issued if the owners do not match.

Restrictions

All restrictions that apply to the Move Object (MOVOBJ) and Rename Object (RNMOBJ) commands also

apply to the QLIRNMO API.

Authorities and Locks

Auxiliary Storage Pool (ASP) Device Authority

*USE when a specific ASP device name is specified for optional parameter group 1.

Library Authority

*CHANGE

 Note: If you are renaming an object that can only exist in library QSYS, the library authority is

not checked.

Object Authority

*OBJMGT

 Notes:

1. Object types of *FILE, *JRN, *JRNRCV, and *MSGQ need *OBJOPR and *OBJMGT authorities.

2. An object type of *AUTL needs *AUTLMGT authority.

Library Lock

*SHRUPD

Object Lock

*EXCL

 If you replace an object, you must be the owner of the from object or have *ALLOBJ special authority.

*ALLOBJ authority is needed to replace the authority on the from object.

When the request is to replace an existing object and the target object already exists, the following

authority considerations apply:

v For *PGM and *CRQD objects, the user must have *OBJEXIST, *OBJMGT, and *READ authorities to the

existing target object.

v For *FILE objects, the user must have *OBJOPR, *OBJMGT, and *OBJEXIST authorities to the existing

target object.

v For *AUTL objects, the user must be the owner and have *AUTLMGT authority to the existing target

object.

v For *LIB and *SBSD objects, the user must have *OBJEXIST, *OBJMGT, and *USE authorities to the

existing target object.

v For other object types, the user must have *OBJEXIST authority to the existing target object in addition

to the other authorities listed under ″Object Authority″.

164 System i: Programming Object APIs

Required Parameter Group

From qualified object name

INPUT; CHAR(20)

 The object being renamed and the library in which it is located. The first 10 characters contain the

object name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The thread’s current library

*LIBL The thread’s library list

Object type

INPUT; CHAR(10)

 The type of object being renamed. If the from object and the target object belong to the same

library, only a rename operation is done. The object type must be supported on the RNMOBJ

command. If the from object and the target object belong to different libraries, a move operation

is done. The object type must be supported on the MOVOBJ command. If both a rename and a

move operation are done, the object type must be supported on both the RNMOBJ and MOVOBJ

commands. An asterisk (*) must precede the object type. For a list of the object types that cannot

be moved or renamed, see the Renaming objects and Moving objects from one library to another

topics.

Target qualified object name

INPUT; CHAR(20)

 The new name of the object and the new library in which it will be located. The object name can

be the same name as the original object or a new name. The library name can be the same name

as the original library or a new name. If the object name is the same as the original object, the

library name must not be the same as the original library unless the target and from library

auxiliary storage pool (ASP) device names are not the same. The first 10 characters contain the

object name, and the second 10 characters contain the library name.

Replace object

INPUT; CHAR(1)

 Whether to replace an existing object with the same name as the target object and library name

parameter in the auxiliary storage pool named in the target library auxiliary storage pool (ASP)

device name parameter. The following values can be specified:

 0 Do not replace the existing object in the target library. If 0 is specified and the target object already exists, an

error message is returned to the application.

1 Replace the existing object in the target library.

2 Replace the existing object in the target library. For an existing *PGM object, send an informational message

which identifies the new name of the object and the target library where it was moved. If the existing *PGM

object was moved to the QRPLOBJ library (or the QRPLxxxxx library if the target object is in a library in a

primary or secondary auxiliary storage pool (ASP) where ’xxxxx’ is the number of the primary ASP of the

ASP group), informational message CPI2121 is sent. If the existing *PGM object was moved to the QTEMP

library, informational message CPI2118 is sent. If the existing *PGM object was deleted because it could not be

moved into the replaced object library or QTEMP, no message is sent.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Object APIs 165

Optional Parameter Group 1

From library auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

 The name of the auxiliary storage pool (ASP) device from which storage is allocated for the

library containing the object to be renamed or moved. For all operations other than a library

rename, the ASP device must have status of ’Available’. For a library rename operation, the ASP

device must have a status of ’Active’ or ’Available’ and the target library auxiliary storage pool

(ASP) device and the from library auxiliary storage pool (ASP) device must be the same device. If

this parameter is omitted in cases where it is valid for this parameter to have a value other than

an asterisk (*), the thread’s library name space will be used.

This parameter must be an asterisk (*) if specified when *CURLIB or *LIBL is specified as the

library name in the from qualified object name parameter. If a library to be renamed is in an

auxiliary storage pool (ASP) device that is not currently part of the thread’s library name space,

specify current-library-name in the first 10 characters and QSYS in the second 10 characters of the

from qualified object name and the auxiliary-storage-pool-device-name in the from library auxiliary

storage pool (ASP) device name.

One of the following special values may be specified:

 * The ASPs in the thread’s library name space.

*CURASPGRP The ASPs in the thread’s ASP group.

*SYSBAS The system ASP (1) and defined basic user ASPs (2-32).

Target library auxiliary storage pool (ASP) device name

INPUT; CHAR(10)

 The name of the auxiliary storage pool (ASP) device from which storage is allocated for the

library to contain the object after the rename or move. For all operations other than a library

rename, the ASP device must have status of ’Available’. For a library rename operation, the ASP

device must have a status of ’Active’ or ’Available’ and the target library auxiliary storage pool

(ASP) device and the from library auxiliary storage pool (ASP) device must be the same device. If

this parameter is omitted, the thread’s library name space will be used.

If a library to be renamed is to be in an auxiliary storage pool (ASP) device that is not currently

part of the thread’s library name space, specify new-library-name in the first 10 characters and

QSYS in the second 10 characters of the target qualified object name and specify either *SAME or

an auxiliary-storage-pool-device-name in the target library auxiliary storage pool (ASP) device name

that is the same as specified in the from library auxiliary storage pool (ASP) device name.

One of the following special values may be specified:

 * The ASPs in the thread’s library name space.

*SAME The library to which the object will be renamed or moved is in the same ASP as the library

containing the object to be renamed or moved.

*CURASPGRP The ASPs in the thread’s ASP group.

*SYSBAS The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32).

Usage Notes

This API is conditionally threadsafe. For multithreaded jobs, see the restrictions in the Rename Object

(RNMOBJ) command.

Error Messages

 Message ID Error Message Text

CPFB8ED E Device description &1 not correct for operation.

166 System i: Programming Object APIs

Message ID Error Message Text

CPF180B E Function &1 not allowed.

CPF21A3 E &1 not valid for replace object option.

CPF21A4 E Objects cannot be moved into QTEMP.

CPF21A5 E Cannot replace object &1 in &2 type *&3.

CPF2111 E Library &1 already exists.

CPF2112 E Object &1 in &2 type *&3 already exists.

CPF2132 E Object &1 already exists in library &2.

CPF2136 E Renaming library &1 failed.

CPF2139 E Rename of library &1 failed.

CPF2140 E Rename of library &1 previously failed.

CPF2146 E Owner of object &1 and object being replaced not the same.

CPF2160 E Object type *&1 not eligible for requested function.

CPF2164 E Rename of library &2 not complete.

CPF2166 E System library cannot be renamed or deleted.

CPF2173 E Value for ASPDEV not valid with special value for library.

CPF2176 E Library &1 damaged.

CPF218C E &1 not a primary or secondary ASP

CPF2183 E Object &1 cannot be moved into library &3.

CPF2189 E Not authorized to object &1 in &2 type *&3.

CPF219E E Object type *&1 not valid external object type.

CPF2193 E Object &1 cannot be moved into library &4.

CPF22BC E Object &1 type &3 is not program defined.

CPF24B4 E Severe error while addressing parameter list.

CPF2512 E Operation not allowed for message queue &1.

CPF2691 E Rename of &2 type *&5 did not complete.

CPF2692 E Object &2 type *&5 must be varied off.

CPF2693 E &2 type *&5 cannot be used for rename.

CPF2694 E Object &2 type *&5 cannot be renamed.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3200 E All CPF32xx messages could be returned. xx is from 01 to FF.

CPF7010 E Object &1 in &2 type *&3 already exists.

CPF88C4 E Value &1 for new object is more than 8 characters.

CPF9801 E Object &2 in library &3 not found.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Object APIs,” on page 1 | APIs by category

Object APIs 167

#TOP_OF_PAGE
aplist.htm

Retrieve Library Description (QLIRLIBD) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Library name Input Char(10)

4 Attributes to retrieve Input Char(*)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve Library Description (QLIRLIBD) API lets you retrieve attributes for a specific library, similar

to the Retrieve Library Description (RTVLIBD) command. This API also returns the number of objects in

a library and the total library size, the size of the objects in the library plus the size of the library object

itself. Currently, the only other function that does this is the Display Library (DSPLIB) command with

OUTPUT(*PRINT).

This API also returns an indication of whether or not the library is currently

journaled and other journaling attributes for the library.

Authorities and Locks

A value of *NOTAVL will be returned for the create object auditing information unless you have either all

object (*ALLOBJ) or audit (*AUDIT) special authority.

Library Authority

*READ

Library Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. If this area is smaller than the actual

length of the data returned, the API returns only the data that the area can hold. Refer to “Format

of Data Returned” on page 169 for details about the format.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The minimum length is 8 bytes. If the length is larger than the

size of the receiver variable, results may be unpredictable.

Library name

INPUT; CHAR(10)

 The name of the library for which information is being retrieved.

Attributes to retrieve

INPUT; CHAR(*)

 The information for the library that you want to retrieve.

The information must be in the following format:

 Number of

elements in

request array

BINARY(4)

The total number of all of the request keys.

168 System i: Programming Object APIs

Request keys ARRAY of BINARY(4)

An array of request keys to identify what fields of information about the library are requested.

The size of the array is defined in the preceding number of elements in request array value. For a

list of the valid key identifiers, see “Keys” on page 170.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of Data Returned

For detailed descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Variable length records returned

12 C BINARY(4) Variable length records available

16 10 CHAR(*) Variable length record for each key specified. For the specific

format of the variable length record, see “Format for Variable

Length Record.”

Format for Variable Length Record

For detailed descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of returned data

4 4 BINARY(4) Key identifier

8 8 BINARY(4) Size of field

12 C CHAR(*) Field value

 CHAR(*) Reserved

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned. This value includes the length of this field and

all the fields following it in the structure.

If insufficient space is provided for the receiver variable, this value would be set to the last byte of the

last complete variable length record.

Field value. The value of the field returned.

Object APIs 169

Key identifier. The key that identifies the returned field. For a list of the valid keys, see “Keys.”

Length of returned data. The length associated with a particular field.

The length includes the space required to hold the following fields:

v This field

v The key identifier

v The size of (returned) field

v The field value

v The reserved field (if multiple keys are requested)

Reserved. An unused field. This field contains hexadecimal zeros. If multiple keys are requested, a

reserved value is added for boundary alignment.

Size of field. The size of the returned field.

Variable length records available. The number of complete variable length records that can be returned.

All variable length records are returned if enough space is provided.

Variable length records returned. The number of variable length records actually returned.

Keys

The following table lists the valid key identifiers that can be specified in the attributes to retrieve

parameter. See the “Field Descriptions” on page 171 for the descriptions of the valid key fields.

 Key ID Type Field

1 CHAR(1) Type of library

2 BINARY(4) Auxiliary storage pool (ASP) number

3 CHAR(10) Create authority

4 CHAR(10) Create object auditing

5 CHAR(50) Text description

6 CHAR(12) Library size information

7 BINARY(4) Number of objects in library

8 CHAR(10) Auxiliary storage pool (ASP) device name

9 CHAR(10) Auxiliary storage pool (ASP) group name

10 CHAR(1) Currently journaled

11 CHAR(10) Current or last journal name

12 CHAR(10) Current or last journal library name

13 CHAR(1) Journal images

14 CHAR(1) Omit journal entry

15 CHAR(1) New objects inherit journaling

16 CHAR(8) Journaling last started date and time

17 CHAR(10) Starting journal receiver name for apply

18 CHAR(10) Starting journal receiver library name for apply

19 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) device

name

170 System i: Programming Object APIs

Key ID Type Field

20 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) group

name

21 CHAR(*) Journal inherit rules

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of the ASP device where storage is allocated for

the library. The following special values can be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS The system ASP (ASP 1) or basic user ASPs (ASPs 2-32).

Auxiliary storage pool (ASP) group name. The name of the ASP group where storage is allocated for the

library. The ASP group name is the name of the primary ASP within the ASP group. The value returned

can be the same as the value returned for the auxiliary storage pool (ASP) device name field. The

following special values can be returned:

 *N The name of the ASP group cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) from which the

system allocates storage for the library. The following values can be returned:

 1 System ASP

2-32 Basic user ASPs

33-255 Primary or secondary ASPs

Create authority. The default public authority for an object created into the library. This is the authority

given to a user who does not have specific authority to the object, who is not on an authorization list

specified for the object, and whose user groups have no specific authority to the object. When you create

an object into the library, the AUT parameter on the create command for the object determines the public

authority for the object. If the AUT value on the create command for the object is *LIBCRTAUT, which is

the default, the public authority for the object is set to the CRTAUT value for the library. The following

values can be returned:

 *ALL The user can perform all authorized operations on an object created in this library.

*CHANGE The user can read the object description and has read, add, update, and delete authority to an

object created in this library.

*EXCLUDE The user is prevented from accessing an object created in this library.

*SYSVAL The default authority for an object created in this library is determined by the value specified by

the QCRTAUT system value.

*USE The user can read the object and its description but cannot change them for an object created in

this library.

Authorization list

name

The name of the authorization list that secures an object created in this library. The default public

authority is taken from the authorization list, and the public authority for the object is specified as

*AUTL.

Create object auditing. The auditing value for objects created in this library. The following values can be

returned:

 *ALL All change or read access to the object is logged.

Object APIs 171

*CHANGE All change access to the object by all users is logged.

*NONE Use or change access to the object is not logged (no audit entry is sent to the security journal).

*NOTAVL The auditing value is not available because you do not have either all object (*ALLOBJ) or audit

(*AUDIT) special authority.

*SYSVAL The value specified in the system value QCRTOBJAUD is used.

*USRPRF The user profile of the user who accesses the object is used to determine if an audit record is sent

for this access. The OBJAUD parameter of the Change User Auditing (CHGUSRAUD) command is

used to turn auditing on for a specific user.

Current or last journal library name. The name of the library that contains the journal that receives

the journaled changes to the library, if the library is currently journaled. If the library was previously

journaled but is not currently journaled, this field contains the name of the library that contains the last

journal to which the library was journaled. This field is blank if journaling has never been started for this

library.

Current or last journal name. The name of the journal that receives the journaled changes to the

library, if the library is currently journaled. If the library was previously journaled but is not currently

journaled, this field contains the name of the last journal to which the library was journaled. This field is

blank if journaling has never been started for this library.

Currently journaled. An indication of whether or not the library is currently journaled. See the Start

Journal Library (STRJRNLIB) command for more information about starting journaling for a library. The

following values can be returned:

 ’0’ The library is not currently journaled.

’1’ The library is currently journaled.

Other journaling-related fields may contain data even though the library is not currently journaled.

Journal images. The type of images that are written to the journal receiver for updates to the library.

The following values can be returned:

 blank Journaling has never been started for this library.

’0’ Only after images are generated for changes to the library.

Journal inherit rules. The rules specifying the conditions when journaling is to be inherited from the

library. Journaling can be started when a new journal-eligible object created into, moved into, or restored

into this library. Each rule defines the object types and operations that determine the objects for which

journaling should be started. See the Start Journal Library (STRJRNLIB) command for more information

about journaling a library. The journal inherit rules are defined in a commonly shared format,

Qjo_Inherit_Rules_t. See Journal Inherit Rules for more information about this layout.

Journaling last started date and time. The date and time at which journaling was last started for the

library, in system time-stamp format. See Convert Date and Time Format (QWCCVTDT) API for

information about using this time-stamp format. This field contains hexadecimal zeros if journaling has

never been started for the library.

Library size information. Information about the size of the library, which includes the size of the objects

in the library plus the size of the library object itself. Only objects to which you have an authority other

than *EXCLUDE are included in the total library size. See “Library Size Information Format” on page 174

for the format of this key.

172 System i: Programming Object APIs

qjoinhrules.htm
qwccvtdt.htm

New objects inherit journaling. Identifies whether or not new journal-eligible objects created into,

moved into, or restored into this library should inherit journaling from the library according to the

journal inherit rules. The journal inherit rules can be retrieved using key 21 (Journal inherit rules).

Note: You should examine the inherit rules overridden field in the journal inherit rules to determine

whether or not the journal inherit rules are overridden by the existence of a data area with the name

QDFTJRN in the library, regardless of the value of this field.

The following values can be returned:

 ’0’ The new journal-eligible objects will not inherit journaling from the library.

’1’ The new journal-eligible objects will inherit journaling from the library according to the journal

inherit rules.

Omit journal entry. The journal entries that will not be written. Journal entries cannot be omitted for

libraries. The following values can be returned:

 blank Journaling has never been started for this library.

’0’ No entries are omitted.

Number of objects in library. The total number of external objects in the specified library. The count

includes objects to which you may not be authorized.

Starting journal receiver library auxiliary storage pool (ASP) device name. The name of the auxiliary

storage pool (ASP) device where storage is allocated for the library that contains the starting journal

receiver for apply. This field is blank if either the library has never been journaled or the library has not

been saved and restored since journaling was started. The following special values can be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver library name. The name of the library that contains the starting journal

receiver for apply. This field is blank if either the library has never been journaled or the library has not

been saved and restored since journaling was started.

Starting journal receiver library auxiliary storage pool (ASP) group name. The name of the auxiliary

storage pool (ASP) group where storage is allocated for the starting journal receiver library. The name of

the ASP group is the name of the primary ASP within the group. The value returned can be the same as

the value returned for the starting journal receiver library auxiliary storage pool (ASP) device name field.

This field is blank if either the library has never been journaled or the library has not been saved and

restored since journaling was started. The following special values can be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver name for apply. The name of the oldest journal receiver needed to

successfully use the Apply Journaled Changes (APYJRNCHG) command. This field is blank if either the

library has never been journaled or the library has not been saved and restored since journaling was

started.

Text description. The user-defined text that briefly describes the library and its function.

Type of library. The library type. The following values can be returned:

Object APIs 173

’0’ The library is a production library. Database files in production libraries cannot be opened for updating

if a user, while in debug mode, requested that production libraries be protected.

’1’ The library is a test library. All objects in a test library can be updated during a test. See the Start Debug

(STRDBG) command in the on-line help for more details.

Library Size Information Format

The following table shows the layout of the library size information key. For detailed descriptions of the

fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Library size

4 4 BINARY(4) Library size multiplier

8 8 CHAR(1) Information status

9 9 CHAR(3) Reserved

Field Descriptions

Information status. Whether or not all objects in the library were calculated in the library size. The

following values can be returned:

 ’0’ Some objects in the library are locked, or the user does not have any authority to the object. The size of

these objects was not included in the total library size.

’1’ The size of all the objects in the library was used in determining the total library size.

Library size. The size of the library object and all of the objects in the library in units of the library size

multiplier. If the information status field is 1, the total library size is equal to or smaller than the library

size multiplied by the library size multiplier. If the information status field is 0, the total library size

could be greater than the library size multiplied by the library size multiplier because the size of some

objects has not been included in the total library size.

Library size multiplier. The value to multiply the library size by to get the total library size. The

following values can be returned:

 1 The total library size is smaller than 1, 000, 000, 000 bytes.

1024 The total library size is between 1, 000, 000, 000 and 1, 024, 000, 000, 000 bytes.

1 048 576 The total library size is larger than 1, 024, 000, 000, 000 bytes.

Reserved. An unused field. This field contains hexadecimal zeros.

Error Messages

 Message ID Error Message Text

CPF210E E Library &1 not available for reason code &2.

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

174 System i: Programming Object APIs

Message ID Error Message Text

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C89 E Key &1 specified more than once.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF980B E Object &1 in library &2 not available.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Object APIs,” on page 1 | APIs by category

Retrieve Object Description (QUSROBJD) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Object and library name Input Char(20)

5 Object type Input Char(10)

 Optional Parameter Group 1:

 6 Error code I/O Char(*)

 Optional Parameter Group 2:

 7 Auxiliary storage pool (ASP) control Input Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Retrieve Object Description (QUSROBJD) API lets you retrieve object information about a specific

object. This information is similar to the information returned using the Display Object Description

(DSPOBJD) command or Retrieve Object Description (RTVOBJD) command.

You can use the QUSROBJD API to:

v Determine who owns which objects in the specified libraries

v Provide disk management functions based on the object’s size and use

v Provide backup analysis based on when the object was last saved or last updated

v Provide source member and object analysis from source member information to verify that the current

source was used to create the specified object

v Work with a list of objects created by the QUSLOBJ API

Authorities and Locks

A value of *NOTAVL will be returned for the object auditing information unless you have either all object

(*ALLOBJ) or audit (*AUDIT) special authority.

Object APIs 175

#TOP_OF_PAGE
aplist.htm

Auxiliary Storage Pool (ASP) Device Authority

*EXECUTE when a specific auxiliary storage pool (ASP) device name or *ALLAVL is specified for

the auxiliary storage pool (ASP) control parameter.

Library Authority

*EXECUTE

Object Authority for Non-*FILE Objects

Any authority other than *EXCLUDE

Object Authority for *FILE Objects

*OBJOPR

Library Lock

None.

Object Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the requested information. It can be smaller than the format

requested as long as the next parameter, length of receiver variable, specifies the length correctly.

When this variable is smaller than the format, the API returns only the data that the variable can

hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The minimum length is 8 bytes. Do not specify a length that

is longer than the receiver variable; the results are unpredictable.

Format name

INPUT; CHAR(8)

 The content and format of the information returned for each specified member. The possible

format names are:

 OBJD0100 Basic information (fastest)

OBJD0200 Information similar to that displayed by the programming development manager (PDM)

OBJD0300 Service information

OBJD0400 Full information (slowest)

These are described in the following sections.

Object and library name

INPUT; CHAR(20)

 The object for which you want to retrieve information, and the library in which it is located. The

first 10 characters contain the object name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The thread’s current library is searched. When this value is used, the auxiliary storage pool (ASP)

device name in the auxiliary storage pool (ASP) control parameter must be an asterisk (*), if

specified.

*LIBL All libraries in the thread’s library list are searched. When this value is used, the auxiliary storage

pool (ASP) device name in the auxiliary storage pool (ASP) control parameter must be an asterisk

(*), if specified.

176 System i: Programming Object APIs

Object type

INPUT; CHAR(10)

 The type of object for which you want to retrieve the information. You can only specify external

object types. For a complete list of the available object types, see External object types.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Auxiliary storage pool (ASP) control

Input; CHAR(*)

 The information used to define the auxiliary storage pool (ASP) to search. See “Auxiliary Storage

Pool (ASP) Control Format” for details. If optional parameter group 2 is omitted in cases where it

is valid for the ASP device name to have a value other than an asterisk (*), the thread’s library

name space will be used.

Auxiliary Storage Pool (ASP) Control Format

The following shows the format of the auxiliary storage pool (ASP) control parameter. This parameter is

used to define the auxiliary storage pools (ASPs) to search. For detailed descriptions of the fields in the

table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of auxiliary storage pool (ASP) control format

4 4 CHAR(10) Auxiliary storage pool (ASP) device name

14 E CHAR(10) Auxiliary storage pool (ASP) search type

Field Descriptions

Auxiliary storage pool (ASP) device name. The name of an auxiliary storage pool (ASP) device in which

storage is allocated for the library that contains the object. The ASP device must have a status of

’Available’. This field must be an asterisk (*) if optional parameter group 2 is specified when *CURLIB or

*LIBL is specified as the library name in the object and library name parameter. If optional parameter

group 2 is omitted in cases where it is valid for the ASP device name to have a value other than an

asterisk (*), the thread’s library name space will be used. One of the following special values may be

specified:

 * The ASPs that are currently part of the thread’s library name space will be searched to locate the

library. This includes the system ASP (ASP 1), all defined basic user ASPs (ASPs 2-32), and, if the

thread has an ASP group, the primary and secondary ASPs in the thread’s ASP group.

*SYSBAS The system ASP (ASP 1) and all defined basic user ASPs (ASPs 2-32) will be searched to locate the

library. No primary or secondary ASPs will be searched, even if the thread has an ASP group.

*CURASPGRP If the thread has an ASP group, the primary and secondary ASPs in the ASP group will be

searched to locate the library. The system ASP (ASP 1) and defined basic user ASPs (ASPs 2-32)

will not be searched.

Object APIs 177

*ALLAVL All available ASPs will be searched. This includes the system ASP (ASP 1), all defined basic user

ASPs (ASPs 2-32), and all available primary and secondary ASPs (ASPs 33-255 with a status of

’Available’). The ASP groups are searched in alphabetical order by the primary ASP. The system

ASP and all defined basic user ASPs are searched after the ASP groups. ASPs and libraries to

which the user is not authorized are bypassed and no authority error messages are sent. The

search ends when the first object is found of the specified object name, library name and object

type. If the user is not authorized to the object, an authority error message is sent.

Auxiliary storage pool (ASP) search type. The type of the search when a specific auxiliary storage pool

(ASP) device name is specified for the ASP device name field. This field must be blanks when a special

value is specified for the auxiliary storage pool (ASP) device name field. One of the following values may

be specified:

 *ASP Only the single ASP named in the auxiliary storage pool (ASP) device name field will be searched.

*ASPGRP All ASPs in the auxiliary storage pool (ASP) group named in the auxiliary storage pool (ASP)

device name field will be searched. The device name must be the name of the primary auxiliary

storage pool (ASP) in the group.

Length of auxiliary storage pool (ASP) control format. The total length of the auxiliary storage pool

(ASP) control format. The length can be 0 bytes to indicate that no auxiliary storage pool (ASP) control

information is provided. Otherwise, the length must be 24 bytes. An error is returned if the length

specified is not 24 or 0.

OBJD0100 Format

The following information is returned for the OBJD0100 format. For detailed descriptions of the fields in

the table, see “Field Descriptions” on page 181.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Object name

18 12 CHAR(10) Object library name

28 1C CHAR(10) Object type

38 26 CHAR(10) Return library

48 30 BINARY(4) Object auxiliary storage pool (ASP) number

52 34 CHAR(10) Object owner

62 3E CHAR(2) Object domain

64 40 CHAR(13) Creation date and time

77 4D CHAR(13) Object change date and time

OBJD0200 Format

The following information is returned for the OBJD0200 format. For detailed descriptions of the fields in

the table, see “Field Descriptions” on page 181.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJD0100 format

178 System i: Programming Object APIs

Offset

Type Field Dec Hex

90 5A CHAR(10) Extended object attribute

100 64 CHAR(50) Text description

150 96 CHAR(10) Source file name

160 A0 CHAR(10) Source file library name

170 AA CHAR(10) Source file member name

OBJD0300 Format

The following information is returned for the OBJD0300 format. For detailed descriptions of the fields in

the table, see “Field Descriptions” on page 181.

 Offset

Type Field Dec Hex

0 0 Everything from the OBJD0200 format

180 B4 CHAR(13) Source file updated date and time

193 C1 CHAR(13) Object saved date and time

206 CE CHAR(13) Object restored date and time

219 DB CHAR(10) Creator’s user profile

229 E5 CHAR(8) System where object was created

237 ED CHAR(7) Reset date

244 F4 BINARY(4) Saved size

248 F8 BINARY(4) Save sequence number

252 FC CHAR(10) Storage

262 106 CHAR(10) Save command

272 110 CHAR(71) Save volume ID

343 157 CHAR(10) Save device

353 161 CHAR(10) Save file name

363 16B CHAR(10) Save file library name

373 175 CHAR(17) Save label

390 186 CHAR(9) System level

399 18F CHAR(16) Compiler

415 19F CHAR(8) Object level

423 1A7 CHAR(1) User changed

424 1A8 CHAR(16) Licensed program

440 1B8 CHAR(10) Program temporary fix (PTF)

450 1C2 CHAR(10) Authorized program analysis report (APAR)

OBJD0400 Format

The following information is returned for the OBJD0400 format. For detailed descriptions of the fields in

the table, see “Field Descriptions” on page 181.

Object APIs 179

Offset

Type Field Dec Hex

0 0 Everything from the OBJD0300 format

460 1CC CHAR(7) Last-used date

467 1D3 CHAR(1) Usage information updated

468 1D4 BINARY(4) Days-used count

472 1D8 BINARY(4) Object size

476 1DC BINARY(4) Object size multiplier

480 1E0 CHAR(1) Object compression status

481 1E1 CHAR(1) Allow change by program

482 1E2 CHAR(1) Changed by program

483 1E3 CHAR(10) User-defined attribute

493 1ED CHAR(1) Object overflowed auxiliary storage pool (ASP) indicator

494 1EE CHAR(13) Save active date and time

507 1FB CHAR(10) Object auditing value

517 205 CHAR(10) Primary group

527 20F CHAR(1) Journal status

528 210 CHAR(10) Journal name

538 21A CHAR(10) Journal library name

548 224 CHAR(1) Journal images

549 225 CHAR(1) Journal entries to be omitted

550 226 CHAR(13) Journal start date and time

563 233 CHAR(1) Digitally signed

564 234 BINARY(4) Saved size in units

568 238 BINARY(4) Saved size multiplier

572 23C BINARY(4) Library auxiliary storage pool (ASP) number

576 240 CHAR(10) Object auxiliary storage pool (ASP) device name

586 24A CHAR(10) Library auxiliary storage pool (ASP) device name

596 254 CHAR(1) Digitally signed by system-trusted source

597 255 CHAR(1) Digitally signed more than once

598 256 CHAR(2) Reserved

600 258 BINARY(4) Primary associated space size

604 25C CHAR(1) Optimum space alignment

605 25D CHAR(10) Object auxiliary storage pool (ASP) group name

615 267 CHAR(10) Library auxiliary storage pool (ASP) group name

625 271 CHAR(10) Starting journal receiver name for apply

635 27B CHAR(10) Starting journal receiver library name

645 285 CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) device

name

655 28F CHAR(10) Starting journal receiver library auxiliary storage pool (ASP) group

name

665 299 CHAR(1) Reserved

180 System i: Programming Object APIs

Field Descriptions

Allow change by program. A 1-character variable that is used to return the allow change by program

flag. A 1 is returned if the object can be changed with the Change Object Description (QLICOBJD) API. A

0 is returned if the object cannot be changed with the API.

Authorized program analysis report (APAR). The identifier of the authorized program analysis report

(APAR) that caused this object to be replaced. The field is blank if the object did not change because of

an APAR.

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned.

Changed by program. A 1-character variable that is used to return the changed by program flag. A 1 is

returned if the object has been changed with the QLICOBJD API. A 0 is returned if the object has not

been changed by the API.

Compiler. The licensed program identifier, version number, release level, and modification level of the

compiler.

The field has a pppppppVvvRrrMmm format where:

 ppppppp The licensed program identifier.

Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

The field is blank if you do not compile the program.

Creation date and time. The date and time the object was created. The creation date and time field is in

the CYYMMDDHHMMSS format:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

Creator’s user profile. The name of the user that created the object.

Days-used count. The number of days the object was used. If the object does not have a last used date,

the count is 0.

Digitally signed. A 1-character variable that indicates whether the object has a digital signature.

 0 The object does not have a digital signature.

1 The object has a digital signature.

Object APIs 181

Digitally signed by system-trusted source. A 1-character variable that indicates whether the object is

signed by a source that is trusted by the system.

 0 None of the object signatures came from a source that is trusted by the system.

1 The object is signed by a source that is trusted by the system. If the object has multiple signatures, at least one

of the signatures came from a source that is trusted by the system.

Digitally signed more than once. A 1-character variable that indicates whether the object has more than

one digital signature.

 0 The object has only one digital signature or does not have a digital signature. Refer to the digitally signed

variable to determine whether the object has a digital signature.

1 The object has more than one digital signature. Refer to the digitally signed by system-trusted source variable

to determine whether the object has a digital signature from a source trusted by the system.

Extended object attribute. The extended attribute of the object, such as a program or file type. Extended

attributes further describe the object. For example, an object type of *PGM may have a value of RPG

(RPG program) or CLP (CL program), and an object type of *FILE may have a value of PF (physical file),

LF (logical file), DSPF (display file), SAVF (save file), and so on.

Journal entries to be omitted. The journal entries to be omitted. The field is 1 if open and close operations

do not generate open and close journal entries. The field is 0 if no entries are omitted. This field is blank if

the object has never been journaled.

Journal images. The type of images that are written to the journal receiver for updates to the object. The

field is 0 if only after images are generated for changes to the object. The field is 1 if both before and after

images are generated for changes to the object. This field is blank if the object has never been journaled.

Journal library name. The name of the library that contains the journal. This field is blank if the object

has never been journaled.

Journal name. The name of the current or last journal. This field is blank if the object has never been

journaled.

Journal start date and time. The time at which journaling for the object was last started. The format is

the same as the creation date description. This field is blank if the object has never been journaled.

Journal status. The 1-character variable that returns the current journaling status of an object. The value

is 1 if the object is currently being journaled; the value is 0 if the object is currently not being journaled.

Last-used date. The date the object was last used. This field is in the CYYMMDD format, which is the

same format used for the reset date. If the object has no last-used date, the field is blank.

Licensed program. The name, release level, and modification level of the licensed program if the

retrieved object is part of a licensed program. The 7-character name starts in character position 1, the

version number starts in position 8, the release level starts in position 11, and the modification level starts

in position 14. The field is blank if the retrieved object is not a part of a licensed program.

Library auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device

where storage is allocated for the library that contains the object. The following special values may be

returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

182 System i: Programming Object APIs

Library auxiliary storage pool (ASP) group name. The name of the auxiliary storage pool (ASP) group

where storage is allocated for the library that contains the object. The name of the ASP group is the name

of the primary ASP within the group. The value returned may be the same as the value returned for the

library auxiliary storage pool (ASP) device name field. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Library auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where

storage is allocated for the library that contains the object. A value from one of the following ranges is

returned:

 1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object auditing value. A 10-character variable that is used to return the type of auditing for an object.

The valid values are:

 *NONE No auditing occurs for this object when it is read or changed regardless of the user who is

accessing the object.

*USRPRF Audit this object only if the current user is being audited. The current user is tested to determine

if auditing should be done for this object. The user profile can specify if only change access is

audited or if both read and change accesses are audited for this object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is defined as a read or change

operation.

*NOTAVL The auditing value is not available because you do not have either all object (*ALLOBJ) or audit

(*AUDIT) special authority.

Object auxiliary storage pool (ASP) device name. The name of the auxiliary storage pool (ASP) device

where storage is allocated for the object. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) group name. The name of the auxiliary storage pool (ASP) group

where storage is allocated for the object. The name of the ASP group is the name of the primary ASP

within the group. The value returned may be the same as the value returned for the object auxiliary

storage pool (ASP) device name field. The following special values may be returned:

 *N The name of the ASP device cannot be determined.

*SYSBAS System ASP (ASP 1) or basic user ASPs (ASPs 2-32)

Object auxiliary storage pool (ASP) number. The number of the auxiliary storage pool (ASP) where

storage is allocated for the object. A value from one of the following ranges is returned:

 1 System ASP

2-32 Basic user ASP

33-255 Primary or secondary ASP

Object change date and time. The date and time the object was last changed. The format is the same as

the creation date description, or it is blank if the object was not changed.

Object APIs 183

Object compression status. Whether the object is compressed or decompressed. The status is returned in

a 1-character variable with one of these values:

 Y Compressed.

N Permanently decompressed and compressible.

X Permanently decompressed and not compressible.

T Temporarily decompressed.

F Saved with storage freed; compression status cannot be determined.

Temporarily decompressed objects exist in both decompressed and compressed form. Permanently

decompressed objects exist in decompressed form only. The system handles some decompression

automatically, depending on the type of object, the operation performed on it, and its frequency of use.

For an overview of object compression and decompression, see the Object compression or decompression

topic. For details about how to explicitly compress and decompress objects, see the online help for these

commands: Compress Object (CPROBJ), Decompress Object (DCPOBJ), and Reclaim Temporary Storage

(RCLTMPSTG).

Object domain. The domain that contains the object. The value is *U if the object is in the user domain,

or *S if the object is in the system domain.

Object level. The object control level for the created object.

Object library name. The name of the library that contains the object.

Object name. The name of the object.

Object overflowed auxiliary storage pool (ASP) indicator. The 1-character variable that returns the object

overflowed auxiliary storage pool (ASP) indicator. The value is 1 if the object overflowed the ASP in

which it resides; the value is 0 if the object has not overflowed the ASP. For objects in the system ASP

(ASP 1) or in a primary or secondary ASP (ASPs 33-255), a 0 is always returned because an object that

resides in the system ASP or in a primary or secondary ASP cannot overflow its ASP.

Object owner. The name of the object owner’s user profile.

Object restored date and time. The date and time the object was last restored. The format is the same as

for the creation date, or it is blank if the object was never restored.

Object saved date and time. The date and time the object was last saved. The format is the same as for

the creation date description, or it is blank if the object was never saved.

Object size. The size of the object in units of the object size multiplier. The object size is equal to or

smaller than the object size multiplied by the object size multiplier. The object size includes the value

returned in the primary associated space size field (format OBJL0400).

Object size multiplier. The value to multiply the object size by to get the object size in bytes.

The following values can be returned:

 1 The object size is smaller than 1 000 000 000 bytes.

1024 The object size is between 1 000 000 000 and 1 023 999 998 976 bytes.

1048576 The object size is larger than 1 023 999 998 976 bytes.

Object type. The object type. For a list of all the available object types, see External object types.

184 System i: Programming Object APIs

Optimum space alignment. A 1-character variable that indicates whether the space associated with the

object has been optimally aligned. Optimum alignment may allow for better performance of applications

that manipulate the object. The possible values are as follows:

 0 The space associated with the object has not been optimally aligned.

1 The space associated with the object has been optimally aligned.

2 There is not a space associated with the object.

Primary associated space size. The size, in bytes, of the primary associated space used by the object. If

the object does not have an associated space, the size is 0.

Primary group. The name of the user who is the primary group for the object. If no primary group exists

for the object, this field contains a value of *NONE.

Program temporary fix (PTF). The number of the program temporary fix (PTF) number that caused this

object to be replaced. This field is blank if the object was not changed because of a PTF.

Reserved. An unused field. It contains hexadecimal zeros.

Reset date. The date the days-used count was last reset to 0. The reset date field is in the CYYMMDD

format:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

If the days-used count was not reset, the date is blank.

Return library. The name of the library that contains the object if *LIBL or *CURLIB is specified for the

library name on the object parameter.

Save active date and time. The date and time the object was last saved when the SAVACT(*LIB,

*SYSDFN, or *YES) save operation was specified, in system time-stamp format. This parameter is found

on the Save Library (SAVLIB), Save Object (SAVOBJ), Save Changed Object (SAVCHGOBJ), and Save

Document Library Object (SAVDLO) CL commands. The format is the same as for the creation date

description, or it is blank if the object was never saved or if SAVACT(*NO) was specified on the last save

operation for the object.

Save command. The command used to save the object. The field is blank if the object was not saved.

Save device. The type of device to which the object was last saved. The field is *SAVF if the last save

operation was to a save file. The field is *DKT if the last save operation was to diskette. The field is *TAP

if the last save operation was to tape. The field is *OPT if the last save operation was to optical. The field

is blank if the object was not saved.

Save file library name. The name of the library that contains the save file if the object was saved to a

save file. The field is blank if the object was not saved to a save file.

Save file name. The name of the save file if the object was saved to a save file. The field is blank if the

object was not saved to a save file.

Save label. The file label used when the object was saved. The variable is blank if the object was not

saved to tape, diskette, or optical. The value of the variable corresponds to the value specified for the

LABEL or OPTFILE parameter on the command used to save the object.

Object APIs 185

Save sequence number. The tape sequence number assigned when the object was saved on tape. If the

object was not saved to tape, the field contains zeros.

Saved size. The size of the object in bytes of storage at the time of the last save operation. The field

contains zeros if the object was not saved. This field will contain a size up to 2 GB. If the saved size is

actually greater than 2GB, -1 is returned in this field. Fields saved size in units and saved size multiplier

should be used to get the saved size that is larger than 2GB.

Saved size in units. The size of the object in units of the saved size multiplier at the time of the last save

operation. The saved size is equal to or smaller than the saved size multiplied by the saved size

multiplier. The field contains zeros if the object was not saved.

Saved size multiplier. The value to multiply the saved size by to get the saved size in bytes.

The following values can be returned:

 1 The saved size is smaller than 1 000 000 000 bytes.

1024 The saved size is between 1 000 000 000 and 1 023 999 998 976 bytes.

1048576 The saved size is larger than 1 023 999 998 976 bytes.

Save volume ID. The tape, diskette, or optical volumes that are used for saving the object. The variable

returns a maximum of 10 six-character volumes. The volume IDs begin in character positions 1, 8, 15, 22,

29, 36, 43, 50, 57, and 64. Each volume ID entry is separated by a single character. If the object was saved

in parallel format, the separator character contains a 2 before the first volume in the second media file, a

3 before the third media file, and so on, up to a 0 before the tenth media file. Otherwise, the separator

characters are blank. If more than 10 volumes are used and the object was saved in serial format, 1 is

returned in the 71st character of the variable. If the object was saved in parallel format, a 2 is returned in

the 71st character of the variable. Otherwise, the 71st character is blank. The field is blank if the object

was last saved to a save file or if it was never saved.

Source file library name. The name of the library that contains the source file used to create the object.

The field is blank if no source file created the object.

Source file member name. The name of the member in the source file. The field is blank if no source file

created the object.

Source file name. The name of the source file used to create the object. The field is blank if no source file

created the object.

Source file updated date and time. The date and time the member in the source file was last updated.

The field is in the same format as the creation time and date. The field is blank if no source file created

the object.

For a file object, the journal receiver will contain the entry representing the start-of-the-save operation.

However, if there are members within the file that contain partial transactions, then those members may

require an earlier journal receiver. Use the Display File Description (DSPFD) command to determine the

partial transaction state of the members of the file.

Starting journal receiver library auxiliary storage pool (ASP) device name. The name of the auxiliary

storage pool (ASP) device where storage is allocated for the library that contains the starting journal

receiver for apply. This field is blank if the object has never been journaled. The following special values

may be returned:

 *N The name of the ASP device can not be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

186 System i: Programming Object APIs

Starting journal receiver library auxiliary storage pool (ASP) group name. The name of the auxiliary

storage pool (ASP) group where storage is allocated for the library that contains the starting journal

receiver for apply. The name of the ASP group is the name of the primary ASP within the group. The

value returned may be the same as the value returned for the starting journal receiver library auxiliary

storage pool (ASP) device name field. This field is blank if the object has never been journaled. The

following special values may be returned:

 *N The name of the ASP device can not be determined.

*SYSBAS System ASP (ASP 1) or defined basic user ASPs (ASPs 2-32)

Starting journal receiver library name. The name of the library that contains the starting journal receiver

for apply. This field is blank if the object has never been journaled.

Starting journal receiver name for apply. The name of the oldest journal receiver needed to successfully

use the Apply Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG)

command. This field is blank if the object has never been journaled.

For a file object, the journal receiver will contain the entry representing the start-of-the-save operation.

However, if there are members within the file that contain partial transactions, then those members may

require an earlier journal receiver. Use the Display File Description (DSPFD) command to determine the

partial transaction state of the members of the file.

Storage. The storage status of the object data. *FREE indicates the object data is freed and the object is

suspended. *KEEP indicates the object data is not freed and the object is not suspended.

System level. The level of the operating system when the object was created.

The field has a VvvRrrMmm format where:

 Vvv The character V is followed by a 2-character version number.

Rrr The character R is followed by a 2-character release level.

Mmm The character M is followed by a 2-character modification level.

System where object was created. The name of the system on which the object was created.

Text description. The text description of the object. The field is blank if no text description is specified.

Usage information updated. Whether the object usage information is updated for this object type. The

indicator is returned as Y (Yes) or N (No).

User changed. Whether the user program was changed. A character 1 is returned if the user changed the

object. If the object was not changed by the user, the field is character 0.

User-defined attribute. Further defines an object type. This field is set by the user while using the

QLICOBJD API.

Error Messages

 Message ID Error Message Text

CPFB8ED E Device description &1 not correct for operation.

CPF21AC E Length or displacement value &1 not valid.

CPF2101 E Object type *&1 not valid.

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF2150 E Object information function failed.

Object APIs 187

Message ID Error Message Text

CPF2151 E Operation failed for &2 in &1 type *&3.

CPF2173 E Value for ASPDEV not valid with special value for library.

CPF218C E &1 not a primary or secondary ASP.

CPF218D E &1 not a primary ASP when *ASPGRP specified.

CPF2451 E Message queue &1 is allocated to another job.

CPF3CF1 E Error code parameter not valid.

CPF3C07 E Error occurred while retrieving information from object &1.

CPD3C20 D Error occurred with receiver variable specified.

CPD3C21 D Format name &1 is not valid.

CPD3C24 D Length of the receiver variable is not valid.

CPD3C31 D Object type &1 is not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3202 E File &1 in library &2 in use.

CPF3203 E Cannot allocate object for file &1 in &2.

CPF36F7 E Message queue QSYSOPR is allocated to another job.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF980B E Object &1 in library &2 not available.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9821 E Not authorized to program &1 in library &2.

CPF9822 E Not authorized to file &1 in library &2.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9831 E Cannot assign device &1.

CPF9833 E *CURASPGRP or *ASPGRPPRI specified and thread has no ASP group.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Object APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

Using Data Queue APIs

The advantages of using data queues are:

v Using data queues frees a job from performing some work. If the job is an interactive job, the data

queue APIs can provide better response time and decrease the size of the interactive program and its

process activation group (PAG). This, in turn, can help overall system performance. For example, if

188 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

several work station users enter a transaction that involves updating and adding to several files, the

system can perform better if the interactive jobs submit the request for the transaction to a single batch

processing job.

v Data queues are a fast means of asynchronous communication between two jobs. Using a data queue

to send and receive data requires less system resource than using database files, message queues, or

data areas to send and receive data.

v You can send to, receive from, and retrieve a description of a data queue in any HLL program. This is

done by calling the Send to a Data Queue (QSNDDTAQ), Receive from Data Queue (QRCVDTAQ),

Retrieve Data Queue Message (QMHRDQM), Clear Data Queue (QCLRDTAQ), and Retrieve Data

Queue Description (QMHQRDQD) APIs.

v When receiving data from a data queue, you can set a time-out such that the job waits until an entry

arrives on the data queue. This is different from using the EOFDLY parameter on the Override

Database File (OVRDBF) command, which causes the job to be activated whenever the delay time

ends.

v More than one job can receive data from the same data queue. This is an advantage in certain

applications where the number of entries to be processed is greater than one job can handle within the

desired performance restraints. For example, if several printers are available to print orders, several

interactive jobs could send requests to a single data queue. A separate job for each printer could

receive data from the data queue in first-in-first-out (FIFO), last-in-first-out (LIFO), or keyed-queue

order.

v Data queues have the ability to attach a sender ID to each message being placed on the queue. The

sender ID, an attribute of the data queue which is established when the queue is created, contains the

qualified job name and current user profile.

 Top | “Object APIs,” on page 1 | APIs by category

Using User Queue APIs

You can use user queues to:

v Communicate between two processes asynchronously.

v Store data in arrival sequence for later use.

v Contain keyed messages.

v Create a batch machine. (For an example, see Example: Creating a batch machine.

v Permit better performance than the data queue interface.

You can save and restore a user queue; however, you can save or restore its definition only. You cannot

save or restore the messages in it. You cannot restore a user queue if a user queue with the same name

already exists in the library. You must provide programs to use this object type to enqueue and dequeue

messages.

In addition to the user queue APIs, you can work with user queues through the following:

v ILE C programming language

v Delete User Queue (DLTUSRQ) command

v Machine interface (MI) instructions

For detailed descriptions of the MI instruction fields and the formats of those fields, see the i5/OS
®

Machine Interface topic collection. For details about the DLTUSRQ command, see the Control language

topic collection.

 “Object APIs,” on page 1 | APIs by category

Object APIs 189

#TOP_OF_PAGE
aplist.htm
aplist.htm

Using User Index APIs

A user index is an object that allows search functions for data in the index and automatically sorts data

based on the value of the data. User indexes are permanent objects in the user domain or in the system

domain. They have an object type of *USRIDX and a maximum size of 1 terabyte (1 099 511 627 776

bytes). They help streamline table searching, cross-referencing, and ordering of data. In general, if your

table is longer than 1000 entries, an index performs faster than a user-sorted table.

You can use user indexes to:

v Provide search functions

v Do faster insert operations than in a database file

v Do faster retrieve operations than in a database file

v Create an index by name, such as a telephone directory

v Use order entry programs

v Look up abbreviations in an index

v Sort data automatically based on the hexadecimal value of a key

User index entries cannot contain a pointer. You can save and restore all the data in an index. You can

also save and restore user indexes to another system. For more information about user index

considerations, see User index considerations.

In addition to the user index APIs, you can work with user indexes through the following:

v ILE C programming language

v Machine interface (MI) instructions

v Delete User Index (DLTUSRIDX) command

For detailed descriptions of the MI instruction fields and the formats of those fields, see the i5/OS
®

Machine Interface topic collection. For details about the DLTUSRIDX command, see the Control language

topic collection.

 Top | “Object APIs,” on page 1 | APIs by category

Using User Space APIs

User spaces are objects that consist of a collection of bytes used for storing user-defined information. They

are permanent objects that are located in either the system domain or the user domain. They have an

object type of *USRSPC and a maximum size of 16 MB. You can save and restore user spaces to other

systems. If, however, the user spaces contain pointers, you cannot restore the pointers even if you want to

restore them to the same system.

You can use the user space APIs to:

v Create user spaces to be used by list APIs to generate lists of data.

v Store pointers.

v Store large amounts of data. You can create a user space as large as 16 megabytes. You cannot create a

data area larger than 2000 bytes.

v Save information in user space objects, and save and restore the object with the information in it using

CL commands.

v Pass data from job to job or from system to system.

190 System i: Programming Object APIs

#TOP_OF_PAGE
aplist.htm

Note: If the allow user domain (QALWUSRDMN) system value contains only the QTEMP library, you

can use only the user space APIs to create and manipulate user domain spaces in library QTEMP. You

cannot use the Retrieve Pointer to User Space API.

The performance benefits of using optimally aligned spaces may vary over time, so creating a user space

with optimum alignment is highly recommended, even if an application does not experience a

performance benefit from using an optimally aligned user space on one particular release.

 Top | “Object APIs,” on page 1 | APIs by category

Object APIs 191

#TOP_OF_PAGE
aplist.htm

192 System i: Programming Object APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2008 193

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This API descriptions publication documents intended Programming Interfaces that allow the customer to

write programs to obtain the services of IBM i5/OS.

194 System i: Programming Object APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

Advanced 36
Advanced Function Presentation
Advanced Peer-to-Peer Networking
AFP
AIX
AnyNet
AS/400
BCOCA
C/400
COBOL/400
Common User Access
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI
DRDA
Enterprise Storage Server
eServer
FlashCopy
GDDM
i5/OS
IBM
IBM (logo)
InfoColor
Infoprint
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
Lotus
Lotus Notes
MO:DCA
MVS
Net.Data
NetServer
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
POWER5+
PowerPC
Print Services Facility
PrintManager
PROFS
RISC System/6000
RPG/400
RS/6000

Appendix. Notices 195

SAA
SecureWay
SOM
System i
System i5
System Object Model
System/36
System/38
System/390
TotalStorage
VisualAge
WebSphere
xSeries
z/OS

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks

of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

196 System i: Programming Object APIs

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 197

198 System i: Programming Object APIs

����

Printed in USA

	Contents
	Object APIs
	APIs
	Data Queue APIs
	Change Data Queue (QMHQCDQ) API
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Attribute Descriptions
	Usage Notes
	Error Messages

	Clear Data Queue (QCLRDTAQ) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Usage Notes
	Error Messages

	Receive Data Queue (QRCVDTAQ) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Format of Sender Information
	Field Descriptions
	Optional Parameter Group 2
	Usage Notes
	Error Messages

	Retrieve Data Queue Description (QMHQRDQD) API
	Authorities and Locks
	Required Parameter Group
	RDQD0100 Format
	RDQD0200 Format
	Field Descriptions
	Error Messages

	Retrieve Data Queue Message (QMHRDQM) API
	Authorities and Locks
	Required Parameter Group
	RDQM0100 Format
	RDQM0200 Format
	RDQS0100 Format
	RDQS0200 Format
	Field Descriptions
	Error Messages

	Send Data Queue (QSNDDTAQ) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Usage Notes
	Error Messages

	Image Catalog APIs
	Retrieve Image Catalog Details (QVOIRCLD) API
	Authorities and Locks
	Required Parameter Group
	Format RCLD0100
	Format RCLD0200
	Format RCLD0300
	Field Descriptions
	Error Messages

	Retrieve Image Catalogs (QVOIRCLG) API
	Authorities and Locks
	Required Parameter Group
	Format RCLG0100
	Image Catalog List Entry
	Field Descriptions
	Error Messages

	User Queue APIs
	Create User Queue (QUSCRTUQ) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Error Messages

	Delete User Queue (QUSDLTUQ) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	User Index APIs
	Add User Index Entries (QUSADDUI) API
	Authorities and Locks
	Required Parameter Group
	Format for Entry Lengths and Entry Offsets
	Field Descriptions
	Error Messages

	Create User Index (QUSCRTUI) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Optional Parameter Group 4
	Dependencies between Parameters
	Error Messages

	Delete User Index (QUSDLTUI) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Remove User Index Entries (QUSRMVUI) API
	Authorities and Locks
	Required Parameter Group
	Format for Entry Lengths and Entry Offsets
	IDXE0100 Format
	Field Descriptions
	Error Messages

	Retrieve User Index Attributes (QUSRUIAT) API
	Authorities and Locks
	Required Parameter Group
	IDXA0100 Format
	Field Descriptions
	Error Messages

	Retrieve User Index Entries (QUSRTVUI) API
	Authorities and Locks
	Required Parameter Group
	Format for Entry Lengths and Entry Offsets
	IDXE0100 Format
	Field Descriptions
	Error Messages

	User Space APIs
	Change User Space (QUSCHGUS) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Error Messages

	Change User Space Attributes (QUSCUSAT) API
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Records
	Field Descriptions
	Keys
	Field Descriptions
	Error Messages

	Create User Space (QUSCRTUS) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Error Messages

	Delete User Space (QUSDLTUS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Pointer to User Space (QUSPTRUS) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Error Messages

	Retrieve User Space (QUSRTVUS) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Error Messages

	Retrieve User Space Attributes (QUSRUSAT) API
	Authorities and Locks
	Required Parameter Group
	SPCA0100 Format
	Field Descriptions
	Error Messages

	Object-related APIs
	Change Library List (QLICHGLL) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Change Object Description (QLICOBJD) API
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Keys
	Field Descriptions
	Error Messages

	Convert Type (QLICVTTP) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Delete Object (QLIDLTO) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Supported External Object Types
	Usage Notes
	Error Messages

	List Objects (QUSLOBJ) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Authority Control Format
	Selection Control Format
	Auxiliary Storage Pool (ASP) Control Format
	Field Descriptions
	Format of the Generated Lists
	Input Parameter Section
	OBJL0100 List Data Section
	OBJL0200 List Data Section
	OBJL0300 List Data Section
	OBJL0400 List Data Section
	OBJL0500 List Data Section
	OBJL0600 List Data Section
	OBJL0700 List Data Section
	Field Descriptions
	Error Messages

	Materialize Context (QusMaterializeContext) API
	Error Messages

	Move Folder to ASP (QHSMMOVF) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Move Library to ASP (QHSMMOVL) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Error Messages

	Open List of Objects (QGYOLOBJ) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Sort Information Format
	Field Descriptions
	Authority Control Format
	Field Descriptions
	Selection Control Format
	Field Descriptions
	Job Identification Information Formats
	JIDF0000 Format
	Field Descriptions
	JIDF0100 Format
	Field Descriptions
	JIDF0200 Format
	Field Descriptions
	Auxiliary Storage Pool (ASP) Control Format
	Field Descriptions
	Format of Receiver Variable
	Field Descriptions
	Valid Keys
	Key 0200 Contents
	Key 0300 Contents
	Key 0400 Contents
	Key 0500 Contents
	Key 0600 Contents
	Key 0700 Contents
	Field Descriptions
	Error Messages

	Rename Object (QLIRNMO) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Usage Notes
	Error Messages

	Retrieve Library Description (QLIRLIBD) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Returned
	Format for Variable Length Record
	Field Descriptions
	Keys
	Field Descriptions
	Library Size Information Format
	Field Descriptions
	Error Messages

	Retrieve Object Description (QUSROBJD) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Auxiliary Storage Pool (ASP) Control Format
	Field Descriptions
	OBJD0100 Format
	OBJD0200 Format
	OBJD0300 Format
	OBJD0400 Format
	Field Descriptions
	Error Messages

	Concepts
	Using Data Queue APIs
	Using User Queue APIs
	Using User Index APIs
	Using User Space APIs

	Appendix. Notices
	Programming interface information
	Trademarks
	Terms and conditions

